813 research outputs found

    Assortative-Constrained Stochastic Block Models

    Full text link
    Stochastic block models (SBMs) are often used to find assortative community structures in networks, such that the probability of connections within communities is higher than in between communities. However, classic SBMs are not limited to assortative structures. In this study, we discuss the implications of this model-inherent indifference towards assortativity or disassortativity, and show that this characteristic can lead to undesirable outcomes for networks which are presupposedy assortative but which contain a reduced amount of information. To circumvent this issue, we introduce a constrained SBM that imposes strong assortativity constraints, along with efficient algorithmic approaches to solve it. These constraints significantly boost community recovery capabilities in regimes that are close to the information-theoretic threshold. They also permit to identify structurally-different communities in networks representing cerebral-cortex activity regions

    Spectral Clustering of Graphs with the Bethe Hessian

    Full text link
    Spectral clustering is a standard approach to label nodes on a graph by studying the (largest or lowest) eigenvalues of a symmetric real matrix such as e.g. the adjacency or the Laplacian. Recently, it has been argued that using instead a more complicated, non-symmetric and higher dimensional operator, related to the non-backtracking walk on the graph, leads to improved performance in detecting clusters, and even to optimal performance for the stochastic block model. Here, we propose to use instead a simpler object, a symmetric real matrix known as the Bethe Hessian operator, or deformed Laplacian. We show that this approach combines the performances of the non-backtracking operator, thus detecting clusters all the way down to the theoretical limit in the stochastic block model, with the computational, theoretical and memory advantages of real symmetric matrices.Comment: 8 pages, 2 figure

    Partial recovery bounds for clustering with the relaxed KKmeans

    Full text link
    We investigate the clustering performances of the relaxed KKmeans in the setting of sub-Gaussian Mixture Model (sGMM) and Stochastic Block Model (SBM). After identifying the appropriate signal-to-noise ratio (SNR), we prove that the misclassification error decay exponentially fast with respect to this SNR. These partial recovery bounds for the relaxed KKmeans improve upon results currently known in the sGMM setting. In the SBM setting, applying the relaxed KKmeans SDP allows to handle general connection probabilities whereas other SDPs investigated in the literature are restricted to the assortative case (where within group probabilities are larger than between group probabilities). Again, this partial recovery bound complements the state-of-the-art results. All together, these results put forward the versatility of the relaxed KKmeans.Comment: 39 page

    On the relationship between Gaussian stochastic blockmodels and label propagation algorithms

    Full text link
    The problem of community detection receives great attention in recent years. Many methods have been proposed to discover communities in networks. In this paper, we propose a Gaussian stochastic blockmodel that uses Gaussian distributions to fit weight of edges in networks for non-overlapping community detection. The maximum likelihood estimation of this model has the same objective function as general label propagation with node preference. The node preference of a specific vertex turns out to be a value proportional to the intra-community eigenvector centrality (the corresponding entry in principal eigenvector of the adjacency matrix of the subgraph inside that vertex's community) under maximum likelihood estimation. Additionally, the maximum likelihood estimation of a constrained version of our model is highly related to another extension of label propagation algorithm, namely, the label propagation algorithm under constraint. Experiments show that the proposed Gaussian stochastic blockmodel performs well on various benchmark networks.Comment: 22 pages, 17 figure

    Model selection and hypothesis testing for large-scale network models with overlapping groups

    Full text link
    The effort to understand network systems in increasing detail has resulted in a diversity of methods designed to extract their large-scale structure from data. Unfortunately, many of these methods yield diverging descriptions of the same network, making both the comparison and understanding of their results a difficult challenge. A possible solution to this outstanding issue is to shift the focus away from ad hoc methods and move towards more principled approaches based on statistical inference of generative models. As a result, we face instead the more well-defined task of selecting between competing generative processes, which can be done under a unified probabilistic framework. Here, we consider the comparison between a variety of generative models including features such as degree correction, where nodes with arbitrary degrees can belong to the same group, and community overlap, where nodes are allowed to belong to more than one group. Because such model variants possess an increasing number of parameters, they become prone to overfitting. In this work, we present a method of model selection based on the minimum description length criterion and posterior odds ratios that is capable of fully accounting for the increased degrees of freedom of the larger models, and selects the best one according to the statistical evidence available in the data. In applying this method to many empirical unweighted networks from different fields, we observe that community overlap is very often not supported by statistical evidence and is selected as a better model only for a minority of them. On the other hand, we find that degree correction tends to be almost universally favored by the available data, implying that intrinsic node proprieties (as opposed to group properties) are often an essential ingredient of network formation.Comment: 20 pages,7 figures, 1 tabl

    Active Discovery of Network Roles for Predicting the Classes of Network Nodes

    Full text link
    Nodes in real world networks often have class labels, or underlying attributes, that are related to the way in which they connect to other nodes. Sometimes this relationship is simple, for instance nodes of the same class are may be more likely to be connected. In other cases, however, this is not true, and the way that nodes link in a network exhibits a different, more complex relationship to their attributes. Here, we consider networks in which we know how the nodes are connected, but we do not know the class labels of the nodes or how class labels relate to the network links. We wish to identify the best subset of nodes to label in order to learn this relationship between node attributes and network links. We can then use this discovered relationship to accurately predict the class labels of the rest of the network nodes. We present a model that identifies groups of nodes with similar link patterns, which we call network roles, using a generative blockmodel. The model then predicts labels by learning the mapping from network roles to class labels using a maximum margin classifier. We choose a subset of nodes to label according to an iterative margin-based active learning strategy. By integrating the discovery of network roles with the classifier optimisation, the active learning process can adapt the network roles to better represent the network for node classification. We demonstrate the model by exploring a selection of real world networks, including a marine food web and a network of English words. We show that, in contrast to other network classifiers, this model achieves good classification accuracy for a range of networks with different relationships between class labels and network links
    • …
    corecore