4,857 research outputs found

    On palimpsests in neural memory: an information theory viewpoint

    Full text link
    The finite capacity of neural memory and the reconsolidation phenomenon suggest it is important to be able to update stored information as in a palimpsest, where new information overwrites old information. Moreover, changing information in memory is metabolically costly. In this paper, we suggest that information-theoretic approaches may inform the fundamental limits in constructing such a memory system. In particular, we define malleable coding, that considers not only representation length but also ease of representation update, thereby encouraging some form of recycling to convert an old codeword into a new one. Malleability cost is the difficulty of synchronizing compressed versions, and malleable codes are of particular interest when representing information and modifying the representation are both expensive. We examine the tradeoff between compression efficiency and malleability cost, under a malleability metric defined with respect to a string edit distance. This introduces a metric topology to the compressed domain. We characterize the exact set of achievable rates and malleability as the solution of a subgraph isomorphism problem. This is all done within the optimization approach to biology framework.Accepted manuscrip

    Scalable Interactive Volume Rendering Using Off-the-shelf Components

    Get PDF
    This paper describes an application of a second generation implementation of the Sepia architecture (Sepia-2) to interactive volu-metric visualization of large rectilinear scalar fields. By employingpipelined associative blending operators in a sort-last configuration a demonstration system with 8 rendering computers sustains 24 to 28 frames per second while interactively rendering large data volumes (1024x256x256 voxels, and 512x512x512 voxels). We believe interactive performance at these frame rates and data sizes is unprecedented. We also believe these results can be extended to other types of structured and unstructured grids and a variety of GL rendering techniques including surface rendering and shadow map-ping. We show how to extend our single-stage crossbar demonstration system to multi-stage networks in order to support much larger data sizes and higher image resolutions. This requires solving a dynamic mapping problem for a class of blending operators that includes Porter-Duff compositing operators

    Parallel Metric Tree Embedding based on an Algebraic View on Moore-Bellman-Ford

    Full text link
    A \emph{metric tree embedding} of expected \emph{stretch~α1\alpha \geq 1} maps a weighted nn-node graph G=(V,E,ω)G = (V, E, \omega) to a weighted tree T=(VT,ET,ωT)T = (V_T, E_T, \omega_T) with VVTV \subseteq V_T such that, for all v,wVv,w \in V, dist(v,w,G)dist(v,w,T)\operatorname{dist}(v, w, G) \leq \operatorname{dist}(v, w, T) and operatornameE[dist(v,w,T)]αdist(v,w,G)operatorname{E}[\operatorname{dist}(v, w, T)] \leq \alpha \operatorname{dist}(v, w, G). Such embeddings are highly useful for designing fast approximation algorithms, as many hard problems are easy to solve on tree instances. However, to date the best parallel (polylogn)(\operatorname{polylog} n)-depth algorithm that achieves an asymptotically optimal expected stretch of αO(logn)\alpha \in \operatorname{O}(\log n) requires Ω(n2)\operatorname{\Omega}(n^2) work and a metric as input. In this paper, we show how to achieve the same guarantees using polylogn\operatorname{polylog} n depth and O~(m1+ϵ)\operatorname{\tilde{O}}(m^{1+\epsilon}) work, where m=Em = |E| and ϵ>0\epsilon > 0 is an arbitrarily small constant. Moreover, one may further reduce the work to O~(m+n1+ϵ)\operatorname{\tilde{O}}(m + n^{1+\epsilon}) at the expense of increasing the expected stretch to O(ϵ1logn)\operatorname{O}(\epsilon^{-1} \log n). Our main tool in deriving these parallel algorithms is an algebraic characterization of a generalization of the classic Moore-Bellman-Ford algorithm. We consider this framework, which subsumes a variety of previous "Moore-Bellman-Ford-like" algorithms, to be of independent interest and discuss it in depth. In our tree embedding algorithm, we leverage it for providing efficient query access to an approximate metric that allows sampling the tree using polylogn\operatorname{polylog} n depth and O~(m)\operatorname{\tilde{O}}(m) work. We illustrate the generality and versatility of our techniques by various examples and a number of additional results

    Energy Transformer

    Full text link
    Transformers have become the de facto models of choice in machine learning, typically leading to impressive performance on many applications. At the same time, the architectural development in the transformer world is mostly driven by empirical findings, and the theoretical understanding of their architectural building blocks is rather limited. In contrast, Dense Associative Memory models or Modern Hopfield Networks have a well-established theoretical foundation, but have not yet demonstrated truly impressive practical results. We propose a transformer architecture that replaces the sequence of feedforward transformer blocks with a single large Associative Memory model. Our novel architecture, called Energy Transformer (or ET for short), has many of the familiar architectural primitives that are often used in the current generation of transformers. However, it is not identical to the existing architectures. The sequence of transformer layers in ET is purposely designed to minimize a specifically engineered energy function, which is responsible for representing the relationships between the tokens. As a consequence of this computational principle, the attention in ET is different from the conventional attention mechanism. In this work, we introduce the theoretical foundations of ET, explore it's empirical capabilities using the image completion task, and obtain strong quantitative results on the graph anomaly detection task

    GeniePath: Graph Neural Networks with Adaptive Receptive Paths

    Full text link
    We present, GeniePath, a scalable approach for learning adaptive receptive fields of neural networks defined on permutation invariant graph data. In GeniePath, we propose an adaptive path layer consists of two complementary functions designed for breadth and depth exploration respectively, where the former learns the importance of different sized neighborhoods, while the latter extracts and filters signals aggregated from neighbors of different hops away. Our method works in both transductive and inductive settings, and extensive experiments compared with competitive methods show that our approaches yield state-of-the-art results on large graphs
    corecore