36,152 research outputs found

    Quantum Associative Memory

    Full text link
    This paper combines quantum computation with classical neural network theory to produce a quantum computational learning algorithm. Quantum computation uses microscopic quantum level effects to perform computational tasks and has produced results that in some cases are exponentially faster than their classical counterparts. The unique characteristics of quantum theory may also be used to create a quantum associative memory with a capacity exponential in the number of neurons. This paper combines two quantum computational algorithms to produce such a quantum associative memory. The result is an exponential increase in the capacity of the memory when compared to traditional associative memories such as the Hopfield network. The paper covers necessary high-level quantum mechanical and quantum computational ideas and introduces a quantum associative memory. Theoretical analysis proves the utility of the memory, and it is noted that a small version should be physically realizable in the near future

    Optical neural networks: an introduction to a special issue by the feature editors

    Get PDF
    This feature of Applied Optics is devoted to papers on the optical implementation of neural-network models of computation. Papers are included on optoelectronic neuron array devices, optical interconnection techniques using holograms and spatial light modulators, optical associative memories, demonstrations of optoelectronic systems for learning, classification, and target recognition, and on the demonstration, analysis, and simulation of adaptive interconnections for optical neural networks using photorefractive volume holograms
    • …
    corecore