1,531 research outputs found

    Learning Mazes with Aliasing States: An LCS Algorithm with Associative Perception

    Get PDF
    Learning classifier systems (LCSs) belong to a class of algorithms based on the principle of self-organization and have frequently been applied to the task of solving mazes, an important type of reinforcement learning (RL) problem. Maze problems represent a simplified virtual model of real environments that can be used for developing core algorithms of many real-world applications related to the problem of navigation. However, the best achievements of LCSs in maze problems are still mostly bounded to non-aliasing environments, while LCS complexity seems to obstruct a proper analysis of the reasons of failure. We construct a new LCS agent that has a simpler and more transparent performance mechanism, but that can still solve mazes better than existing algorithms. We use the structure of a predictive LCS model, strip out the evolutionary mechanism, simplify the reinforcement learning procedure and equip the agent with the ability of associative perception, adopted from psychology. To improve our understanding of the nature and structure of maze environments, we analyze mazes used in research for the last two decades, introduce a set of maze complexity characteristics, and develop a set of new maze environments. We then run our new LCS with associative perception through the old and new aliasing mazes, which represent partially observable Markov decision problems (POMDP) and demonstrate that it performs at least as well as, and in some cases better than, other published systems

    Adaptive imputation of missing values for incomplete pattern classification

    Get PDF
    In classification of incomplete pattern, the missing values can either play a crucial role in the class determination, or have only little influence (or eventually none) on the classification results according to the context. We propose a credal classification method for incomplete pattern with adaptive imputation of missing values based on belief function theory. At first, we try to classify the object (incomplete pattern) based only on the available attribute values. As underlying principle, we assume that the missing information is not crucial for the classification if a specific class for the object can be found using only the available information. In this case, the object is committed to this particular class. However, if the object cannot be classified without ambiguity, it means that the missing values play a main role for achieving an accurate classification. In this case, the missing values will be imputed based on the K-nearest neighbor (K-NN) and self-organizing map (SOM) techniques, and the edited pattern with the imputation is then classified. The (original or edited) pattern is respectively classified according to each training class, and the classification results represented by basic belief assignments are fused with proper combination rules for making the credal classification. The object is allowed to belong with different masses of belief to the specific classes and meta-classes (which are particular disjunctions of several single classes). The credal classification captures well the uncertainty and imprecision of classification, and reduces effectively the rate of misclassifications thanks to the introduction of meta-classes. The effectiveness of the proposed method with respect to other classical methods is demonstrated based on several experiments using artificial and real data sets

    Chemical structure matching using correlation matrix memories

    Get PDF
    This paper describes the application of the Relaxation By Elimination (RBE) method to matching the 3D structure of molecules in chemical databases within the frame work of binary correlation matrix memories. The paper illustrates that, when combined with distributed representations, the method maps well onto these networks, allowing high performance implementation in parallel systems. It outlines the motivation, the neural architecture, the RBE method and presents some results of matching small molecules against a database of 100,000 models

    A binary neural k-nearest neighbour technique

    Get PDF
    K-Nearest Neighbour (k-NN) is a widely used technique for classifying and clustering data. K-NN is effective but is often criticised for its polynomial run-time growth as k-NN calculates the distance to every other record in the data set for each record in turn. This paper evaluates a novel k-NN classifier with linear growth and faster run-time built from binary neural networks. The binary neural approach uses robust encoding to map standard ordinal, categorical and real-valued data sets onto a binary neural network. The binary neural network uses high speed pattern matching to recall the k-best matches. We compare various configurations of the binary approach to a conventional approach for memory overheads, training speed, retrieval speed and retrieval accuracy. We demonstrate the superior performance with respect to speed and memory requirements of the binary approach compared to the standard approach and we pinpoint the optimal configurations

    A high performance k-NN approach using binary neural networks

    Get PDF
    This paper evaluates a novel k-nearest neighbour (k-NN) classifier built from binary neural networks. The binary neural approach uses robust encoding to map standard ordinal, categorical and numeric data sets onto a binary neural network. The binary neural network uses high speed pattern matching to recall a candidate set of matching records, which are then processed by a conventional k-NN approach to determine the k-best matches. We compare various configurations of the binary approach to a conventional approach for memory overheads, training speed, retrieval speed and retrieval accuracy. We demonstrate the superior performance with respect to speed and memory requirements of the binary approach compared to the standard approach and we pinpoint the optimal configurations. (C) 2003 Elsevier Ltd. All rights reserved

    Associative learning on imbalanced environments: An empirical study

    Get PDF
    Associative memories have emerged as a powerful computational neural network model for several pattern classification problems. Like most traditional classifiers, these models assume that the classes share similar prior probabilities. However, in many real-life applications the ratios of prior probabilities between classes are extremely skewed. Although the literature has provided numerous studies that examine the performance degradation of renowned classifiers on different imbalanced scenarios, so far this effect has not been supported by a thorough empirical study in the context of associative memories. In this paper, we fix our attention on the applicability of the associative neural networks to the classification of imbalanced data. The key questions here addressed are whether these models perform better, the same or worse than other popular classifiers, how the level of imbalance affects their performance, and whether distinct resampling strategies produce a different impact on the associative memories. In order to answer these questions and gain further insight into the feasibility and efficiency of the associative memories, a large-scale experimental evaluation with 31 databases, seven classification models and four resampling algorithms is carried out here, along with a non-parametric statistical test to discover any significant differences between each pair of classifiers.This work has partially been supported by the Mexican Science and Technology Council (CONACYT-Mexico) through the Postdoctoral Fellowship Program (232167), the Mexican PRODEP(DSA/103.5/15/7004), the Spanish Ministry of Economy(TIN2013-46522-P) and the Generalitat Valenciana (PROMETEOII/2014/062)
    • …
    corecore