315 research outputs found

    Topology Recoverability Prediction for Ad-Hoc Robot Networks: A Data-Driven Fault-Tolerant Approach

    Full text link
    Faults occurring in ad-hoc robot networks may fatally perturb their topologies leading to disconnection of subsets of those networks. Optimal topology synthesis is generally resource-intensive and time-consuming to be done in real time for large ad-hoc robot networks. One should only perform topology re-computations if the probability of topology recoverability after the occurrence of any fault surpasses that of its irrecoverability. We formulate this problem as a binary classification problem. Then, we develop a two-pathway data-driven model based on Bayesian Gaussian mixture models that predicts the solution to a typical problem by two different pre-fault and post-fault prediction pathways. The results, obtained by the integration of the predictions of those pathways, clearly indicate the success of our model in solving the topology (ir)recoverability prediction problem compared to the best of current strategies found in the literature

    Using numerical plant models and phenotypic correlation space to design achievable ideotypes

    Full text link
    Numerical plant models can predict the outcome of plant traits modifications resulting from genetic variations, on plant performance, by simulating physiological processes and their interaction with the environment. Optimization methods complement those models to design ideotypes, i.e. ideal values of a set of plant traits resulting in optimal adaptation for given combinations of environment and management, mainly through the maximization of a performance criteria (e.g. yield, light interception). As use of simulation models gains momentum in plant breeding, numerical experiments must be carefully engineered to provide accurate and attainable results, rooting them in biological reality. Here, we propose a multi-objective optimization formulation that includes a metric of performance, returned by the numerical model, and a metric of feasibility, accounting for correlations between traits based on field observations. We applied this approach to two contrasting models: a process-based crop model of sunflower and a functional-structural plant model of apple trees. In both cases, the method successfully characterized key plant traits and identified a continuum of optimal solutions, ranging from the most feasible to the most efficient. The present study thus provides successful proof of concept for this enhanced modeling approach, which identified paths for desirable trait modification, including direction and intensity.Comment: 25 pages, 5 figures, 2017, Plant, Cell and Environmen

    Scalable parallel evolutionary optimisation based on high performance computing

    Get PDF
    Evolutionary algorithms (EAs) have been successfully applied to solve various challenging optimisation problems. Due to their stochastic nature, EAs typically require considerable time to find desirable solutions; especially for increasingly complex and large-scale problems. As a result, many works studied implementing EAs on parallel computing facilities to accelerate the time-consuming processes. Recently, the rapid development of modern parallel computing facilities such as the high performance computing (HPC) bring not only unprecedented computational capabilities but also challenges on designing parallel algorithms. This thesis mainly focuses on designing scalable parallel evolutionary optimisation (SPEO) frameworks which run efficiently on the HPC. Motivated by the interesting phenomenon that many EAs begin to employ increasingly large population sizes, this thesis firstly studies the effect of a large population size through comprehensive experiments. Numerical results indicate that a large population benefits to the solving of complex problems but requires a large number of maximal fitness evaluations (FEs). However, since sequential EAs usually requires a considerable computing time to achieve extensive FEs, we propose a scalable parallel evolutionary optimisation framework that can efficiently deploy parallel EAs over many CPU cores at CPU-only HPC. On the other hand, since EAs using a large number of FEs can produce massive useful information in the course of evolution, we design a surrogate-based approach to learn from this historical information and to better solve complex problems. Then this approach is implemented in parallel based on the proposed scalable parallel framework to achieve remarkable speedups. Since demanding a great computing power on CPU-only HPC is usually very expensive, we design a framework based on GPU-enabled HPC to improve the cost-effectiveness of parallel EAs. The proposed framework can efficiently accelerate parallel EAs using many GPUs and can achieve superior cost-effectiveness. However, since it is very challenging to correctly implement parallel EAs on the GPU, we propose a set of guidelines to verify the correctness of GPU-based EAs. In order to examine these guidelines, they are employed to verify a GPU-based brain storm optimisation that is also proposed in this thesis. In conclusion, the comprehensively experimental study is firstly conducted to investigate the impacts of a large population. After that, a SPEO framework based on CPU-only HPC is proposed and is employed to accelerate a time-consuming implementation of EA. Finally, the correctness verification of implementing EAs based on a single GPU is discussed and the SPEO framework is then extended to be deployed based on GPU-enabled HPC

    Cooperative Particle Swarm Optimization for Combinatorial Problems

    Get PDF
    A particularly successful line of research for numerical optimization is the well-known computational paradigm particle swarm optimization (PSO). In the PSO framework, candidate solutions are represented as particles that have a position and a velocity in a multidimensional search space. The direct representation of a candidate solution as a point that flies through hyperspace (i.e., Rn) seems to strongly predispose the PSO toward continuous optimization. However, while some attempts have been made towards developing PSO algorithms for combinatorial problems, these techniques usually encode candidate solutions as permutations instead of points in search space and rely on additional local search algorithms. In this dissertation, I present extensions to PSO that by, incorporating a cooperative strategy, allow the PSO to solve combinatorial problems. The central hypothesis is that by allowing a set of particles, rather than one single particle, to represent a candidate solution, combinatorial problems can be solved by collectively constructing solutions. The cooperative strategy partitions the problem into components where each component is optimized by an individual particle. Particles move in continuous space and communicate through a feedback mechanism. This feedback mechanism guides them in the assessment of their individual contribution to the overall solution. Three new PSO-based algorithms are proposed. Shared-space CCPSO and multispace CCPSO provide two new cooperative strategies to split the combinatorial problem, and both models are tested on proven NP-hard problems. Multimodal CCPSO extends these combinatorial PSO algorithms to efficiently sample the search space in problems with multiple global optima. Shared-space CCPSO was evaluated on an abductive problem-solving task: the construction of parsimonious set of independent hypothesis in diagnostic problems with direct causal links between disorders and manifestations. Multi-space CCPSO was used to solve a protein structure prediction subproblem, sidechain packing. Both models are evaluated against the provable optimal solutions and results show that both proposed PSO algorithms are able to find optimal or near-optimal solutions. The exploratory ability of multimodal CCPSO is assessed by evaluating both the quality and diversity of the solutions obtained in a protein sequence design problem, a highly multimodal problem. These results provide evidence that extended PSO algorithms are capable of dealing with combinatorial problems without having to hybridize the PSO with other local search techniques or sacrifice the concept of particles moving throughout a continuous search space

    Intelligent Business Process Optimization for the Service Industry

    Get PDF
    The company\u27s sustainable competitive advantage derives from its capacity to create value for customers and to adapt the operational practices to changing situations. Business processes are the heart of each company. Therefore process excellence has become a key issue. This book introduces a novel approach focusing on the autonomous optimization of business processes by applying sophisticated machine learning techniques such as Relational Reinforcement Learning and Particle Swarm Optimization

    Gene regulatory networks modelling using a dynamic evolutionary hybrid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inference of gene regulatory networks is a key goal in the quest for understanding fundamental cellular processes and revealing underlying relations among genes. With the availability of gene expression data, computational methods aiming at regulatory networks reconstruction are facing challenges posed by the data's high dimensionality, temporal dynamics or measurement noise. We propose an approach based on a novel multi-layer evolutionary trained neuro-fuzzy recurrent network (ENFRN) that is able to select potential regulators of target genes and describe their regulation type.</p> <p>Results</p> <p>The recurrent, self-organizing structure and evolutionary training of our network yield an optimized pool of regulatory relations, while its fuzzy nature avoids noise-related problems. Furthermore, we are able to assign scores for each regulation, highlighting the confidence in the retrieved relations. The approach was tested by applying it to several benchmark datasets of yeast, managing to acquire biologically validated relations among genes.</p> <p>Conclusions</p> <p>The results demonstrate the effectiveness of the ENFRN in retrieving biologically valid regulatory relations and providing meaningful insights for better understanding the dynamics of gene regulatory networks.</p> <p>The algorithms and methods described in this paper have been implemented in a Matlab toolbox and are available from: <url>http://bioserver-1.bioacademy.gr/DataRepository/Project_ENFRN_GRN/</url>.</p

    Intelligent Business Process Optimization for the Service Industry

    Get PDF
    The company's sustainable competitive advantage derives from its capacity to create value for customers and to adapt the operational practices to changing situations. Business processes are the heart of each company. Therefore process excellence has become a key issue. This book introduces a novel approach focusing on the autonomous optimization of business processes by applying sophisticated machine learning techniques such as Relational Reinforcement Learning and Particle Swarm Optimization

    Enabling rapid iterative model design within the laboratory environment

    Get PDF
    This thesis presents a proof of concept study for the better integration of the electrophysiological and modelling aspects of neuroscience. Members of these two sub-disciplines collaborate regularly, but due to differing resource requirements, and largely incompatible spheres of knowledge, cooperation is often impeded by miscommunication and delays. To reduce the model design time, and provide a platform for more efficient experimental analysis, a rapid iterative model design method is proposed. The main achievement of this work is the development of a rapid model evaluation method based on parameter estimation, utilising a combination of evolutionary algorithms (EAs) and graphics processing unit (GPU) hardware acceleration. This method is the primary force behind the better integration of modelling and laboratorybased electrophysiology, as it provides a generic model evaluation method that does not require prior knowledge of model structure, or expertise in modelling, mathematics, or computer science. If combined with a suitable intuitive and user targeted graphical user interface, the ideas presented in this thesis could be developed into a suite of tools that would enable new forms of experimentation to be performed. The latter part of this thesis investigates the use of excitability-based models as the basis of an iterative design method. They were found to be computationally and structurally simple, easily extensible, and able to reproduce a wide range of neural behaviours whilst still faithfully representing underlying cellular mechanisms. A case study was performed to assess the iterative design process, through the implementation of an excitability-based model. The model was extended iteratively, using the rapid model evaluation method, to represent a vasopressin releasing neuron. Not only was the model implemented successfully, but it was able to suggest the existence of other more subtle cell mechanisms, in addition to highlighting potential failings in previous implementations of the class of neuron
    • 

    corecore