23 research outputs found

    Sum-of-squares lower bounds for planted clique

    Full text link
    Finding cliques in random graphs and the closely related "planted" clique variant, where a clique of size k is planted in a random G(n, 1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynomial-time algorithms only solve the problem for k ~ sqrt(n). In this paper we study the complexity of the planted clique problem under algorithms from the Sum-of-squares hierarchy. We prove the first average case lower bound for this model: for almost all graphs in G(n,1/2), r rounds of the SOS hierarchy cannot find a planted k-clique unless k > n^{1/2r} (up to logarithmic factors). Thus, for any constant number of rounds planted cliques of size n^{o(1)} cannot be found by this powerful class of algorithms. This is shown via an integrability gap for the natural formulation of maximum clique problem on random graphs for SOS and Lasserre hierarchies, which in turn follow from degree lower bounds for the Positivestellensatz proof system. We follow the usual recipe for such proofs. First, we introduce a natural "dual certificate" (also known as a "vector-solution" or "pseudo-expectation") for the given system of polynomial equations representing the problem for every fixed input graph. Then we show that the matrix associated with this dual certificate is PSD (positive semi-definite) with high probability over the choice of the input graph.This requires the use of certain tools. One is the theory of association schemes, and in particular the eigenspaces and eigenvalues of the Johnson scheme. Another is a combinatorial method we develop to compute (via traces) norm bounds for certain random matrices whose entries are highly dependent; we hope this method will be useful elsewhere

    Improved Sum-of-Squares Lower Bounds for Hidden Clique and Hidden Submatrix Problems

    Full text link
    Given a large data matrix ARn×nA\in\mathbb{R}^{n\times n}, we consider the problem of determining whether its entries are i.i.d. with some known marginal distribution AijP0A_{ij}\sim P_0, or instead AA contains a principal submatrix AQ,QA_{{\sf Q},{\sf Q}} whose entries have marginal distribution AijP1P0A_{ij}\sim P_1\neq P_0. As a special case, the hidden (or planted) clique problem requires to find a planted clique in an otherwise uniformly random graph. Assuming unbounded computational resources, this hypothesis testing problem is statistically solvable provided QClogn|{\sf Q}|\ge C \log n for a suitable constant CC. However, despite substantial effort, no polynomial time algorithm is known that succeeds with high probability when Q=o(n)|{\sf Q}| = o(\sqrt{n}). Recently Meka and Wigderson \cite{meka2013association}, proposed a method to establish lower bounds within the Sum of Squares (SOS) semidefinite hierarchy. Here we consider the degree-44 SOS relaxation, and study the construction of \cite{meka2013association} to prove that SOS fails unless kCn1/3/lognk\ge C\, n^{1/3}/\log n. An argument presented by Barak implies that this lower bound cannot be substantially improved unless the witness construction is changed in the proof. Our proof uses the moments method to bound the spectrum of a certain random association scheme, i.e. a symmetric random matrix whose rows and columns are indexed by the edges of an Erd\"os-Renyi random graph.Comment: 40 pages, 1 table, conferenc

    Spectral pseudorandomness and the road to improved clique number bounds for Paley graphs

    Full text link
    We study subgraphs of Paley graphs of prime order pp induced on the sets of vertices extending a given independent set of size aa to a larger independent set. Using a sufficient condition proved in the author's recent companion work, we show that a family of character sum estimates would imply that, as pp \to \infty, the empirical spectral distributions of the adjacency matrices of any sequence of such subgraphs have the same weak limit (after rescaling) as those of subgraphs induced on a random set including each vertex independently with probability 2a2^{-a}, namely, a Kesten-McKay law with parameter 2a2^a. We prove the necessary estimates for a=1a = 1, obtaining in the process an alternate proof of a character sum equidistribution result of Xi (2022), and provide numerical evidence for this weak convergence for a2a \geq 2. We also conjecture that the minimum eigenvalue of any such sequence converges (after rescaling) to the left edge of the corresponding Kesten-McKay law, and provide numerical evidence for this convergence. Finally, we show that, once a3a \geq 3, this (conjectural) convergence of the minimum eigenvalue would imply bounds on the clique number of the Paley graph improving on the current state of the art due to Hanson and Petridis (2021), and that this convergence for all a1a \geq 1 would imply that the clique number is o(p)o(\sqrt{p}).Comment: 43 pages, 1 table, 6 figure

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Subject index volumes 1–92

    Get PDF

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore