271,057 research outputs found

    High level cognitive information processing in neural networks

    Get PDF
    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field

    Ontology-based model abstraction

    Get PDF
    In recent years, there has been a growth in the use of reference conceptual models to capture information about complex and critical domains. However, as the complexity of domain increases, so does the size and complexity of the models that represent them. Over the years, different techniques for complexity management in large conceptual models have been developed. In particular, several authors have proposed different techniques for model abstraction. In this paper, we leverage on the ontologically well-founded semantics of the modeling language OntoUML to propose a novel approach for model abstraction in conceptual models. We provide a precise definition for a set of Graph-Rewriting rules that can automatically produce much-reduced versions of OntoUML models that concentrate the models’ information content around the ontologically essential types in that domain, i.e., the so-called Kinds. The approach has been implemented using a model-based editor and tested over a repository of OntoUML models

    PoN-S : a systematic approach for applying the Physics of Notation (PoN)

    Get PDF
    Visual Modeling Languages (VMLs) are important instruments of communication between modelers and stakeholders. Thus, it is important to provide guidelines for designing VMLs. The most widespread approach for analyzing and designing concrete syntaxes for VMLs is the so-called Physics of Notation (PoN). PoN has been successfully applied in the analysis of several VMLs. However, despite its popularity, the application of PoN principles for designing VMLs has been limited. This paper presents a systematic approach for applying PoN in the design of the concrete syntax of VMLs. We propose here a design process establishing activities to be performed, their connection to PoN principles, as well as criteria for grouping PoN principles that guide this process. Moreover, we present a case study in which a visual notation for representing Ontology Pattern Languages is designed

    Pattern Reification as the Basis for Description-Driven Systems

    Full text link
    One of the main factors driving object-oriented software development for information systems is the requirement for systems to be tolerant to change. To address this issue in designing systems, this paper proposes a pattern-based, object-oriented, description-driven system (DDS) architecture as an extension to the standard UML four-layer meta-model. A DDS architecture is proposed in which aspects of both static and dynamic systems behavior can be captured via descriptive models and meta-models. The proposed architecture embodies four main elements - firstly, the adoption of a multi-layered meta-modeling architecture and reflective meta-level architecture, secondly the identification of four data modeling relationships that can be made explicit such that they can be modified dynamically, thirdly the identification of five design patterns which have emerged from practice and have proved essential in providing reusable building blocks for data management, and fourthly the encoding of the structural properties of the five design patterns by means of one fundamental pattern, the Graph pattern. A practical example of this philosophy, the CRISTAL project, is used to demonstrate the use of description-driven data objects to handle system evolution.Comment: 20 pages, 10 figure

    Similarity-Based Models of Word Cooccurrence Probabilities

    Full text link
    In many applications of natural language processing (NLP) it is necessary to determine the likelihood of a given word combination. For example, a speech recognizer may need to determine which of the two word combinations ``eat a peach'' and ``eat a beach'' is more likely. Statistical NLP methods determine the likelihood of a word combination from its frequency in a training corpus. However, the nature of language is such that many word combinations are infrequent and do not occur in any given corpus. In this work we propose a method for estimating the probability of such previously unseen word combinations using available information on ``most similar'' words. We describe probabilistic word association models based on distributional word similarity, and apply them to two tasks, language modeling and pseudo-word disambiguation. In the language modeling task, a similarity-based model is used to improve probability estimates for unseen bigrams in a back-off language model. The similarity-based method yields a 20% perplexity improvement in the prediction of unseen bigrams and statistically significant reductions in speech-recognition error. We also compare four similarity-based estimation methods against back-off and maximum-likelihood estimation methods on a pseudo-word sense disambiguation task in which we controlled for both unigram and bigram frequency to avoid giving too much weight to easy-to-disambiguate high-frequency configurations. The similarity-based methods perform up to 40% better on this particular task.Comment: 26 pages, 5 figure
    • …
    corecore