19 research outputs found

    Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/non-COVID-19 Frameworks using Artificial Intelligence Paradigm: A Narrative Review

    Get PDF
    Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for lowincome countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, lowcost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework

    Ophthalmol Ther

    Get PDF
    The healthcare burden of cardiovascular diseases remains a major issue worldwide. Understanding the underlying mechanisms and improving identification of people with a higher risk profile of systemic vascular disease through noninvasive examinations is crucial. In ophthalmology, retinal vascular network imaging is simple and noninvasive and can provide in vivo information of the microstructure and vascular health. For more than 10 years, different research teams have been working on developing software to enable automatic analysis of the retinal vascular network from different imaging techniques (retinal fundus photographs, OCT angiography, adaptive optics, etc.) and to provide a description of the geometric characteristics of its arterial and venous components. Thus, the structure of retinal vessels could be considered a witness of the systemic vascular status. A new approach called "oculomics" using retinal image datasets and artificial intelligence algorithms recently increased the interest in retinal microvascular biomarkers. Despite the large volume of associated research, the role of retinal biomarkers in the screening, monitoring, or prediction of systemic vascular disease remains uncertain. A PubMed search was conducted until August 2022 and yielded relevant peer-reviewed articles based on a set of inclusion criteria. This literature review is intended to summarize the state of the art in oculomics and cardiovascular disease research

    Retinal photograph-based deep learning predicts biological age, and stratifies morbidity and mortality risk

    Get PDF
    Background: ageing is an important risk factor for a variety of human pathologies. Biological age (BA) may better capture ageing-related physiological changes compared with chronological age (CA). Objective: we developed a deep learning (DL) algorithm to predict BA based on retinal photographs and evaluated the performance of our new ageing marker in the risk stratification of mortality and major morbidity in general populations. Methods: we first trained a DL algorithm using 129,236 retinal photographs from 40,480 participants in the Korean Health Screening study to predict the probability of age being ≥65 years ('RetiAGE') and then evaluated the ability of RetiAGE to stratify the risk of mortality and major morbidity among 56,301 participants in the UK Biobank. Cox proportional hazards model was used to estimate the hazard ratios (HRs). Results: in the UK Biobank, over a 10-year follow up, 2,236 (4.0%) died; of them, 636 (28.4%) were due to cardiovascular diseases (CVDs) and 1,276 (57.1%) due to cancers. Compared with the participants in the RetiAGE first quartile, those in the RetiAGE fourth quartile had a 67% higher risk of 10-year all-cause mortality (HR = 1.67 [1.42-1.95]), a 142% higher risk of CVD mortality (HR = 2.42 [1.69-3.48]) and a 60% higher risk of cancer mortality (HR = 1.60 [1.31-1.96]), independent of CA and established ageing phenotypic biomarkers. Likewise, compared with the first quartile group, the risk of CVD and cancer events in the fourth quartile group increased by 39% (HR = 1.39 [1.14-1.69]) and 18% (HR = 1.18 [1.10-1.26]), respectively. The best discrimination ability for RetiAGE alone was found for CVD mortality (c-index = 0.70, sensitivity = 0.76, specificity = 0.55). Furthermore, adding RetiAGE increased the discrimination ability of the model beyond CA and phenotypic biomarkers (increment in c-index between 1 and 2%). Conclusions: the DL-derived RetiAGE provides a novel, alternative approach to measure ageing.ope

    eXplainable Artificial Intelligence (XAI) in aging clock models

    Full text link
    eXplainable Artificial Intelligence (XAI) is a rapidly progressing field of machine learning, aiming to unravel the predictions of complex models. XAI is especially required in sensitive applications, e.g. in health care, when diagnosis, recommendations and treatment choices might rely on the decisions made by artificial intelligence systems. AI approaches have become widely used in aging research as well, in particular, in developing biological clock models and identifying biomarkers of aging and age-related diseases. However, the potential of XAI here awaits to be fully appreciated. We discuss the application of XAI for developing the "aging clocks" and present a comprehensive analysis of the literature categorized by the focus on particular physiological systems

    ILSA 2017 in Tromsø : proceedings from the 42nd annual conference of the International Lung Sound Association

    Get PDF
    Edited by Hasse Medbye, med bidrag fra flere.<brThe usefulness of lung auscultation is changing. It depends on how well practitioners understand the generation of sounds. It also depends on their knowledge on how lung sounds are associated with lung and heart diseases, as well as with other factors such as ageing and smoking habits. In clinical practice, practitioners need to give sufficient attention to lung auscultation, and they should use the same terminology, or at least understand each other’s use of terms. Technological innovations lead to an extended use of lung auscultation. Continuous monitoring of lung sounds is now possible, and computers can extract more information from the complex lung sounds than human hearing is capable of. Learning how to carry out lung auscultation and to interpret the sounds are essential skills in the education of doctors and other health professionals. Thus, new computer based learning tools for the study of recorded sounds will be helpful. In this conference there will be focus on all these determinants for efficient lung auscultation. In addition to free oral presentations, we have three symposia: on computerized analysis based on machine learning, on diagnostics, and on learning lung sounds, including the psychology of hearing. The symposia include extended presentations from invited speakers. The 42nd conference is the first in history arranged by a research unit for general practice. Primary care doctors are probably the group of health professionals that put the greatest emphasis on lung auscultation in their clinical work. Many patients with chest symptoms consult without a known diagnosis, and several studies have shown that general practitioners pay attention to crackles and wheezes when making decisions, for instance when antibiotics are prescribed to coughing patients. In hospital, the diagnosis of lung diseases is more strongly influenced by technologies such as radiography and blood gas analysis. Since lung auscultation holds a strong position in the work of primary care doctors, I think it is just timely, that the 42nd ILSA conference is hosted by General Practice Research Unit in Tromsø. I hope all participants will find presentations of importance, and that the stay in Tromsø will be enjoyable

    Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report

    Get PDF
    The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate

    Vascular Implications of COVID-19: Role of Radiological Imaging, Artificial Intelligence, and Tissue Characterization: A Special Report

    Get PDF
    The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2. This special report addresses an important gap in the literature in understanding (i) the pathophysiology of vascular damage and the role of medical imaging in the visualization of the damage caused by SARS-CoV-2, and (ii) further understanding the severity of COVID-19 using artificial intelligence (AI)-based tissue characterization (TC). PRISMA was used to select 296 studies for AI-based TC. Radiological imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound were selected for imaging of the vasculature infected by COVID-19. Four kinds of hypotheses are presented for showing the vascular damage in radiological images due to COVID-19. Three kinds of AI models, namely, machine learning, deep learning, and transfer learning, are used for TC. Further, the study presents recommendations for improving AI-based architectures for vascular studies. We conclude that the process of vascular damage due to COVID-19 has similarities across vessel types, even though it results in multi-organ dysfunction. Although the mortality rate is ~2% of those infected, the long-term effect of COVID-19 needs monitoring to avoid deaths. AI seems to be penetrating the health care industry at warp speed, and we expect to see an emerging role in patient care, reduce the mortality and morbidity rate

    A Deep Learning Approach to Evaluating Disease Risk in Coronary Bifurcations

    Full text link
    Cardiovascular disease represents a large burden on modern healthcare systems, requiring significant resources for patient monitoring and clinical interventions. It has been shown that the blood flow through coronary arteries, shaped by the artery geometry unique to each patient, plays a critical role in the development and progression of heart disease. However, the popular and well tested risk models such as Framingham and QRISK3 current cardiovascular disease risk models are not able to take these differences when predicting disease risk. Over the last decade, medical imaging and image processing have advanced to the point that non-invasive high-resolution 3D imaging is routinely performed for any patient suspected of coronary artery disease. This allows for the construction of virtual 3D models of the coronary anatomy, and in-silico analysis of blood flow within the coronaries. However, several challenges still exist which preclude large scale patient-specific simulations, necessary for incorporating haemodynamic risk metrics as part of disease risk prediction. In particular, despite a large amount of available coronary medical imaging, extraction of the structures of interest from medical images remains a manual and laborious task. There is significant variation in how geometric features of the coronary arteries are measured, which makes comparisons between different studies difficult. Modelling blood flow conditions in the coronary arteries likewise requires manual preparation of the simulations and significant computational cost. This thesis aims to solve these challenges. The "Automated Segmentation of Coronary Arteries (ASOCA)" establishes a benchmark dataset of coronary arteries and their associated 3D reconstructions, which is currently the largest openly available dataset of coronary artery models and offers a wide range of applications such as computational modelling, 3D printed for experiments, developing, and testing medical devices such as stents, and Virtual Reality applications for education and training. An automated computational modelling workflow is developed to set up, run and postprocess simulations on the Left Main Bifurcation and calculate relevant shape metrics. A convolutional neural network model is developed to replace the computational fluid dynamics process, which can predict haemodynamic metrics such as wall shear stress in minutes, compared to several hours using traditional computational modelling reducing the computation and labour cost involved in performing such simulations
    corecore