142,958 research outputs found

    A novel computational framework for fast, distributed computing and knowledge integration for microarray gene expression data analysis

    Get PDF
    The healthcare burden and suffering due to life-threatening diseases such as cancer would be significantly reduced by the design and refinement of computational interpretation of micro-molecular data collected by bioinformaticians. Rapid technological advancements in the field of microarray analysis, an important component in the design of in-silico molecular medicine methods, have generated enormous amounts of such data, a trend that has been increasing exponentially over the last few years. However, the analysis and handling of these data has become one of the major bottlenecks in the utilization of the technology. The rate of collection of these data has far surpassed our ability to analyze the data for novel, non-trivial, and important knowledge. The high-performance computing platform, and algorithms that utilize its embedded computing capacity, has emerged as a leading technology that can handle such data-intensive knowledge discovery applications. In this dissertation, we present a novel framework to achieve fast, robust, and accurate (biologically-significant) multi-class classification of gene expression data using distributed knowledge discovery and integration computational routines, specifically for cancer genomics applications. The research presents a unique computational paradigm for the rapid, accurate, and efficient selection of relevant marker genes, while providing parametric controls to ensure flexibility of its application. The proposed paradigm consists of the following key computational steps: (a) preprocess, normalize the gene expression data; (b) discretize the data for knowledge mining application; (c) partition the data using two proposed methods: partitioning with overlapped windows and adaptive selection; (d) perform knowledge discovery on the partitioned data-spaces for association rule discovery; (e) integrate association rules from partitioned data and knowledge spaces on distributed processor nodes using a novel knowledge integration algorithm; and (f) post-analysis and functional elucidation of the discovered gene rule sets. The framework is implemented on a shared-memory multiprocessor supercomputing environment, and several experimental results are demonstrated to evaluate the algorithms. We conclude with a functional interpretation of the computational discovery routines for enhanced biological physiological discovery from cancer genomics datasets, while suggesting some directions for future research

    Building an Expert System for Evaluation of Commercial Cloud Services

    Full text link
    Commercial Cloud services have been increasingly supplied to customers in industry. To facilitate customers' decision makings like cost-benefit analysis or Cloud provider selection, evaluation of those Cloud services are becoming more and more crucial. However, compared with evaluation of traditional computing systems, more challenges will inevitably appear when evaluating rapidly-changing and user-uncontrollable commercial Cloud services. This paper proposes an expert system for Cloud evaluation that addresses emerging evaluation challenges in the context of Cloud Computing. Based on the knowledge and data accumulated by exploring the existing evaluation work, this expert system has been conceptually validated to be able to give suggestions and guidelines for implementing new evaluation experiments. As such, users can conveniently obtain evaluation experiences by using this expert system, which is essentially able to make existing efforts in Cloud services evaluation reusable and sustainable.Comment: 8 page, Proceedings of the 2012 International Conference on Cloud and Service Computing (CSC 2012), pp. 168-175, Shanghai, China, November 22-24, 201

    Dynamic load balancing for the distributed mining of molecular structures

    Get PDF
    In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids

    Efficient mining of discriminative molecular fragments

    Get PDF
    Frequent pattern discovery in structured data is receiving an increasing attention in many application areas of sciences. However, the computational complexity and the large amount of data to be explored often make the sequential algorithms unsuitable. In this context high performance distributed computing becomes a very interesting and promising approach. In this paper we present a parallel formulation of the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The application is characterized by a highly irregular tree-structured computation. No estimation is available for task workloads, which show a power-law distribution in a wide range. The proposed approach allows dynamic resource aggregation and provides fault and latency tolerance. These features make the distributed application suitable for multi-domain heterogeneous environments, such as computational Grids. The distributed application has been evaluated on the well known National Cancer Institute’s HIV-screening dataset

    Person monitoring with Bluetooth tracking

    Get PDF
    • …
    corecore