735 research outputs found

    Exploiting Data Mining Techniques for Broadcasting Data in Mobile Computing Environments

    Get PDF
    Cataloged from PDF version of article.Mobile computers can be equipped with wireless communication devices that enable users to access data services from any location. In wireless communication, the server-to-client (downlink) communication bandwidth is much higher than the client-to-server (uplink) communication bandwidth. This asymmetry makes the dissemination of data to client machines a desirable approach. However, dissemination of data by broadcasting may induce high access latency in case the number of broadcast data items is large. In this paper, we propose two methods aiming to reduce client access latency of broadcast data. Our methods are based on analyzing the broadcast history (i.e., the chronological sequence of items that have been requested by clients) using data mining techniques. With the first method, the data items in the broadcast disk are organized in such a way that the items requested subsequently are placed close to each other. The second method focuses on improving the cache hit ratio to be able to decrease the access latency. It enables clients to prefetch the data from the broadcast disk based on the rules extracted from previous data request patterns. The proposed methods are implemented on a Web log to estimate their effectiveness. It is shown through performance experiments that the proposed rule-based methods are effective in improving the system performance in terms of the average latency as well as the cache hit ratio of mobile clients

    CacheZoom: How SGX Amplifies The Power of Cache Attacks

    Get PDF
    In modern computing environments, hardware resources are commonly shared, and parallel computation is widely used. Parallel tasks can cause privacy and security problems if proper isolation is not enforced. Intel proposed SGX to create a trusted execution environment within the processor. SGX relies on the hardware, and claims runtime protection even if the OS and other software components are malicious. However, SGX disregards side-channel attacks. We introduce a powerful cache side-channel attack that provides system adversaries a high resolution channel. Our attack tool named CacheZoom is able to virtually track all memory accesses of SGX enclaves with high spatial and temporal precision. As proof of concept, we demonstrate AES key recovery attacks on commonly used implementations including those that were believed to be resistant in previous scenarios. Our results show that SGX cannot protect critical data sensitive computations, and efficient AES key recovery is possible in a practical environment. In contrast to previous works which require hundreds of measurements, this is the first cache side-channel attack on a real system that can recover AES keys with a minimal number of measurements. We can successfully recover AES keys from T-Table based implementations with as few as ten measurements.Comment: Accepted at Conference on Cryptographic Hardware and Embedded Systems (CHES '17

    Pinwheel Scheduling for Fault-tolerant Broadcast Disks in Real-time Database Systems

    Full text link
    The design of programs for broadcast disks which incorporate real-time and fault-tolerance requirements is considered. A generalized model for real-time fault-tolerant broadcast disks is defined. It is shown that designing programs for broadcast disks specified in this model is closely related to the scheduling of pinwheel task systems. Some new results in pinwheel scheduling theory are derived, which facilitate the efficient generation of real-time fault-tolerant broadcast disk programs.National Science Foundation (CCR-9308344, CCR-9596282

    Pervasive Data Access in Wireless and Mobile Computing Environments

    Get PDF
    The rapid advance of wireless and portable computing technology has brought a lot of research interests and momentum to the area of mobile computing. One of the research focus is on pervasive data access. with wireless connections, users can access information at any place at any time. However, various constraints such as limited client capability, limited bandwidth, weak connectivity, and client mobility impose many challenging technical issues. In the past years, tremendous research efforts have been put forth to address the issues related to pervasive data access. A number of interesting research results were reported in the literature. This survey paper reviews important works in two important dimensions of pervasive data access: data broadcast and client caching. In addition, data access techniques aiming at various application requirements (such as time, location, semantics and reliability) are covered

    Rough Set Granularity in Mobile Web Pre-Caching

    Get PDF
    Mobile Web pre-caching (Web prefetching and caching) is an explication of performance enhancement and storage limitation ofmobile devices

    Exploring gate-limited analytical models for high-performance network storage servers

    Get PDF
    Gate-limited service is a type of service discipline found in queueing theory and can be used to describe a number of operational environments, for example, large transport systems such as buses, trains or taxis, etc. Recently, there has been the observation that such systems can also be used to describe interactive Internet Services which use a Client/Server interaction. In addition, new services of this genre are being developed for the local area. One such service is a Network Memory Server (NMS) being developed here at Middlesex University. Though there are several examples of real systems that can be modelled using gate-limited service, it is fair to say that the analytical models which have been developed for gate-limited systems have been difficult to use, requiring many iterations before practical results can be generated. In this paper, a detailed gate-limited bulk service queueing model based on Markov chains is explored and a numerical solution is demonstrated for simple scenarios. Quantitative results are presented and compared with a mathematical simulation. The analysis is used to develop an algorithm based on the concept of optimum operational points. The algorithm is then employed to build a high-performance server which is capable of balancing the need to prefetch for streaming applications while promptly satisfying demand misses. The algorithm is further tested using a systems simulation and then incorporated into an Experimental File System (EFS) which showed that the algorithm can be used in a real networking environment

    Using a data mining approach for the prediction of user movements in mobile environments

    Get PDF
    Cataloged from PDF version of article.Mobility prediction is one of the most essential issues that need to be explored for mobility management in mobile computing systems. In this thesis, we propose a new algorithm for predicting the next inter-cell movement of a mobile user in a Personal Communication Systems network. In the first phase of our three-phase algorithm, user mobility patterns are mined from the history of mobile user trajectories. In the second phase, mobility rules are extracted from these patterns, and in the last phase, mobility predictions are accomplished by using these rules. The performance of the proposed algorithm is evaluated through simulation as compared to two other prediction methods. The performance results obtained in terms of Precision and Recall indicate that our method can make more accurate predictions than the other methods.Yavaş, GökhanM.S
    corecore