2,791 research outputs found

    A preliminary safety evaluation of route guidance comparing different MMI concepts

    Get PDF

    Telematics systems in road transport

    Get PDF
    Purpose: The research objective of the article is to assess the level and degree of the use of telematics systems supporting supply chain management based on GPS/GSM/GPRS technology in road transport companies operating in Poland.Methodology: The research methodology was based on the analysis of domestic and foreign subject literature as well as on surveys carried out in road transport companies in Poland for the needs of a National Science Centre grant.Findings: The results of the research performed have shown that despite the large popularity and use of telematics systems, the scope of their use is still very low. The tests carried out on a sample of 500 road transport companies operating in Poland allow for applying the outcome of the research done to the general population

    EXPLORING THREAT-SPECIFIC PRIVACY ASSURANCES IN THE CONTEXT OF CONNECTED VEHICLE APPLICATIONS

    Get PDF
    Connected vehicles enable a wide range of use cases, often facilitated by smartphone apps and involving extensive processing of driving-related data. Since information about actual driving behavior or even daily routines can be derived from this data, the question of privacy arises. We explore the impact of privacy assurances on driving data sharing concerns. Specifically, we consider two data-intensive cases: usage-based insurance and traffic hazard warning apps. We conducted two experimental comparisons to investigate whether and how privacy-related perceptions about vehicle data sharing can be altered by different types of text-based privacy assurances on fictional app store pages. Our results are largely inconclusive, and we did not find clear evidence that text-based privacy guarantees can significantly alter privacy concerns and download intentions. Our results suggest that general and threat-specific privacy assurance statements likely yield no or only negligible benefits for providers of connected vehicle apps regarding user perceptions

    Processed Radio Frequency towards Pancreas Enhancing the Deadly Diabetes Worldwide

    Get PDF
    Diabetes is a chronic and debilitating disease, which is associated with a range of complications putting tremendous burden on medical, economic and socio-technological infrastructure globally. Yet the higher authorities of health services are facing the excruciating cumulative reasons of diabetes as a very imperative worldwide issue in the 21st century. The study aims to relook at the misapplication of the processed radio frequency that frailties in the pancreas within and around the personal body boundary area. The administered sensor data were obtained at laboratory experiments from the selected specimens on dogs and cats in light and dark environments. The study shows the frequent urine flow speed varies with sudden infection due to treated wireless sensor networks in active open eyes. The overweight and obese persons are increasingly affected in diabetes with comprehensive urinary pressure due to continuous staying at dark environment. The findings replicate the increasing tide of diabetes globally. The study also represents the difficulties of physicians to provide adequate diabetic management according to their expectancy due to insecure personal area network control unit.Dynamic sensor network is indispensable for healthcare but such network is at risk to health security due to digitalized poisoning within GPS positions. The study recommends the anti-radiation integrated system policy with user’s security alternative approach to inspire dealing with National Health Policy and Sustainable Development Goals 2030

    The potential of naturalistic driving studies with simple data acquisition systems (DAS) for monitoring driver behaviour

    Get PDF
    This report addresses the important question regarding the potential of simple and low-cost technologies to address research questions such as the ones dealt with in UDrive. The resources and efforts associated with big naturalistic studies, such as the American SHRP II and the European UDrive, are tremendous and can not be repeated and supported frequently, or even more than once in a decade (or a life time..). Naturally, the wealth and richness of the integrated data, gathered by such substantial studies and elaborated DAS, cannot be compared to data collected via simpler, nomadic data collection technologies. The question that needs to be asked is how many Research Questions (RQs) can be addressed, at least to some extent, by other low-cost and simple technologies? This discussion is important, not only in order to replace the honourable place (and cost!) of naturalistic studies, but also to complement and enable their continuity after their completion. Technology is rapidly evolving and almost any attempt to provide a comprehensive and complete state of the art of existing technologies (as well as their features and cost) is doomed to fail. Hence, in chapter 1 of this report, we have created a framework for presentation, on which the various important parameters associated with the question at hand, are illustrated, positioned and discussed. This framework is denoted by “Framework for Naturalistic Studies” (FNS) and serves as the back bone of this report. The framework is a conceptual framework and hence, is flexible in the sense that its dimensions, categories and presentation mode are not rigid and can be adjusted to new features and new technologies as they become available. The framework is gradually built using two main dimensions: data collection technology type and sample size. The categories and features of the main dimensions are not rigidly fixed, and their values can be ordinal, quantitative or qualitative. When referring to parameters that are not numerical –even the order relation among categories is not always clear. In this way –the FNS can be, at times, viewed as a matrix rather than a figure with order relation among categories presented along its axes. On the two main dimensions of the FNS –data collection technology type and sample size –other dimensions are incorporated. These dimensions include: cost, data access, specific technologies and research questions that can be addressed by the various technologies. These other dimensions are mapped and positioned in the plot area of the FNS. Other presentations, in which the axes and the plot area are interchanged, or 3 -dimensional presentations are performed, can be incorporated to highlight specific angles of the involved dimensions. The various technologies for data collection were mapped on the FNS. The technology groups include: mobile phone location services, mobile phone applications, telematics devices, built -in data loggers, dash cameras and enhanced dash cameras, wearable technologies, compound systems, eye trackers and Mobileyetype technologies. After this detailed illustrations of analyses that can be conducted using simple low-cost technologies are described. It is demonstrated how temporal and spatial analysis can reveal important aspects on the behavioural patterns of risky drivers. Also one stand alone smartphone app can be used to monitor and evaluate smartphone us age while driving. Most of the simple systems relate to specific behaviour that is monitored (i.e. speeding , lane keeping etc.). Additionally, certain thresholds or triggers are used to single out risky situations, which are related to that behaviour. However, once those instances are detected, no information on the circumstances leading or accompanying this behaviour are available. Typically, visual information (discrete or preferably continuous) is needed in order to fully understand the circumstances. Hence, upgrading simple (single-task oriented) technologies by other technologies (most typically by cameras), can significantly improve researchers' ability to obtain information on the circumstances, which accompany the detected risky behaviour. One of the most conceptually straightforward integrated systems is a system, for which the basic technology detects the desired behaviour (e.g. harsh braking) and triggers a simple continuous dashboard camera to save the relevant information, which occurs together with that behaviour. Many RQs can be addressed using this type of combined systems
    • …
    corecore