30 research outputs found

    Carbon Monoxide-Dependent Chemolithotrophic Growth of Clostridium thermoautotrophicum

    Get PDF
    The acetogen Clostridium thermoautotrophicum was cultivated under CO-dependent chemolithotrophic conditions. CO-dependent growth profiles and energetics indicated that supplemental CO2 was fundamental to efficient growth at the expense of CO. Overall product stoichiometry approximated 6.5CO --\u3e CH3CO2H + 3.5CO2 + 0.6 cell C + 0.5 unrecovered C. Initial CO/CO2 ratios of 2 to 4 yielded optimal doubling times and cell yields. Maximal YCO values approximated 2.5 g of cell dry weight per mol of CO consumed; Y H2 , was considerably lower than Y CO Cross-transfer growth experiments and protein profiles indicated differential expression of genes between CO and methanol cultures

    Carbon Monoxide-Dependent Chemolithotrophic Growth of Clostridium thermoautotrophicum

    Get PDF
    The acetogen Clostridium thermoautotrophicum was cultivated under CO-dependent chemolithotrophic conditions. CO-dependent growth profiles and energetics indicated that supplemental CO2 was fundamental to efficient growth at the expense of CO. Overall product stoichiometry approximated 6.5CO --\u3e CH3CO2H + 3.5CO2 + 0.6 cell C + 0.5 unrecovered C. Initial CO/CO2 ratios of 2 to 4 yielded optimal doubling times and cell yields. Maximal YCO values approximated 2.5 g of cell dry weight per mol of CO consumed; Y H2 , was considerably lower than Y CO Cross-transfer growth experiments and protein profiles indicated differential expression of genes between CO and methanol cultures

    Enrichment of syngas-converting communities from a multi-orifice baffled bioreactor

    Get PDF
    The substitution of natural gas by renewable biomethane is an interesting option to reduce global carbon footprint. Syngas fermentation has potential in this context, as a diverse range of low-biodegradable materials that can be used. In this study, anaerobic sludge acclimatized to syngas in a multi-orifice baffled bioreactor (MOBB) was used to start enrichments with CO. The main goals were to identify the key players in CO conversion and evaluate potential interspecies metabolic interactions conferring robustness to the process. Anaerobic sludge incubated with 0.7 × 105 Pa CO produced methane and acetate. When the antibiotics vancomycin and/or erythromycin were added, no methane was produced, indicating that direct methanogenesis from CO did not occur. Acetobacterium and Sporomusa were the predominant bacterial species in CO-converting enrichments, together with methanogens from the genera Methanobacterium and Methanospirillum. Subsequently, a highly enriched culture mainly composed of a Sporomusa sp. was obtained that could convert up to 1.7 × 105 Pa CO to hydrogen and acetate. These results attest the role of Sporomusa species in the enrichment as primary CO utilizers and show their importance for methane production as conveyers of hydrogen to methanogens present in the culture.Nederlandse Organisatie voor Wetenschappelijk Onderzoek (024.002.002); FP7 Ideas: European Research Council (323009); Norte 2020 - Sistema de Apoio a Investigação Científica e Tecnol ogica (NORTE-01-0145-FEDER-000004); Fundação para a Ciência e a Tecnologia (PD/BD/128030/2016, SFRH/BPD/104837/ 2014).info:eu-repo/semantics/publishedVersio

    Carbon monoxide consumption and production by wetland peats

    Get PDF
    Wetland peats were analyzed for their potential to consume and produce carbon monoxide (CO) under aerobic and anaerobic conditions. Kinetic and functional characteristics of anaerobic CO consumption were compared with those of methanogenesis. Inhibitors of methanogenesis and sulfate reduction decreased the rate of CO consumption by 30 and 20%, respectively, suggesting that methanogens and sulfate reducers played secondary roles in CO uptake. Low concentrations of nitrate (0.2 mM) stimulated CO uptake, while high concentrations (20 mM) were partially inhibitory. Sulfate (20 mM), ferric iron (60 μmol cm-3), and acetate (10 mM) had no effect on CO consumption. Formate and glucose (10 mM) temporarily stimulated net CO and H2 production. Aerobic incubations of previously anaerobic peat stimulated transient CO production. Kinetic analysis of anaerobic CO consumption by two sediment types (organic peat and mineral silt) showed that maximum potential uptake velocities (V(maxp)) in each sediment were similar, 1-2 nmol CO cm-3 sediment h-1, with apparent half saturation constants (K(app)) ranging from 5 to 37 nM CO. Anaerobic CO consumption may limit CO accumulation in wetland peats and sediments, thereby affecting CO emissions. Understanding the role and characteristics of wetland CO consumption may help explain current and future patterns in wetland CO dynamics. Copyright (C) 1999 Federation of European Microbiological Societies

    Pathways and bioenergetics of anaerobic carbon monoxide fermentation

    Get PDF
    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.The authors involved were financially supported by an ERC grant (project 323009) and the Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO)

    Insights into the biotechnology potential of Methanosarcina

    Get PDF
    Methanogens are anaerobic archaea which conserve energy by producing methane. Found in nearly every anaerobic environment on earth, methanogens serve important roles in ecology as key organisms of the global carbon cycle, and in industry as a source of renewable biofuels. Environmentally, methanogenic archaea play an essential role in the reintroducing unavailable carbon to the carbon cycle by anaerobically converting low-energy, terminal metabolic degradation products such as one and two-carbon molecules into methane which then returns to the aerobic portion of the carbon cycle. In industry, methanogens are commonly used as an inexpensive source of renewable biofuels as well as serving as a vital component in the treatment of wastewater though this is only the tip of the iceberg with respect to their metabolic potential. In this review we will discuss how the efficient central metabolism of methanoarchaea could be harnessed for future biotechnology applications

    OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities

    Get PDF
    Microorganisms rarely live isolated in their natural environments but rather function in consolidated and socializing communities. Despite the growing availability of high-throughput sequencing and metagenomic data, we still know very little about the metabolic contributions of individual microbial players within an ecological niche and the extent and directionality of interactions among them. This calls for development of efficient modeling frameworks to shed light on less understood aspects of metabolism in microbial communities. Here, we introduce OptCom, a comprehensive flux balance analysis framework for microbial communities, which relies on a multi-level and multi-objective optimization formulation to properly describe trade-offs between individual vs. community level fitness criteria. In contrast to earlier approaches that rely on a single objective function, here, we consider species-level fitness criteria for the inner problems while relying on community-level objective maximization for the outer problem. OptCom is general enough to capture any type of interactions (positive, negative or combinations thereof) and is capable of accommodating any number of microbial species (or guilds) involved. We applied OptCom to quantify the syntrophic association in a well-characterized two-species microbial system, assess the level of sub-optimal growth in phototrophic microbial mats, and elucidate the extent and direction of inter-species metabolite and electron transfer in a model microbial community. We also used OptCom to examine addition of a new member to an existing community. Our study demonstrates the importance of trade-offs between species- and community-level fitness driving forces and lays the foundation for metabolic-driven analysis of various types of interactions in multi-species microbial systems using genome-scale metabolic models

    Carboxydotrophic growth of <i>Geobacter sulfurreducens</i>

    Get PDF
    This study shows that Geobacter sulfurreducensgrows on carbon monoxide (CO) as electron donor with fumarateas electron acceptor. Geobacter sulfurreducens wastolerant to high CO levels, with up to 150 kPa in the headspacetested. During growth, hydrogen was detected in very slightamounts (~5 Pa). In assays with cell-free extract of cellsgrown with CO and fumarate, production of hydrogen fromCO was not observed, and hydrogenase activity with benzylviologen as electron acceptor was very low. Taken together,this suggested that CO is not utilized via hydrogen as intermediate.In the presence of CO, reduction of NADP+ wasobserved at a rate comparable to CO oxidation coupled tofumarate reduction in vivo. The G. sulfurreducens genomecontains a single putative carbon monoxide dehydrogenaseencodinggene. The gene is part of a predicted operon alsocomprising a putative Fe–S cluster-binding subunit (CooF)and a FAD–NAD(P) oxidoreductase and is preceded by aputative CO-sensing transcription factor. This cluster may beinvolved in a novel pathway for CO oxidation, but furtherstudies are necessary to ascertain this. Similar gene clustersare present in several other species belonging to theDeltaproteobacteria and Firmicutes, for which CO utilizationis currently not known
    corecore