864 research outputs found

    Risk-driven behaviour in the African leopard:how is leopard behaviour mediated by lion presence?

    Get PDF
    Agricultural expansion is restricting many carnivore species to smaller tracts of land, potentially forcing increased levels of overlap between competitors by constraining spatial partitioning. Understanding encounters between competitors is important because competition can influence species densities, distributions, and reproductive success. Despite this, little is known of the mechanisms that mediate coexistence between the African leopard (Panthera pardus) and its competitors. This project used GPS radiocollar data and playback experiments to understand risk-driven changes in the leopard’s behaviour and movement during actual and perceived encounters with lions (Panthera leo). Targeted playbacks of lion roars were used to elucidate immediate and short-lived behavioural responses in leopards when lions were perceived to be within the immediate area. To investigate the post-encounter spatial dynamics of leopard movements, the project used datasets from high-resolution GPS radiocollars deployed on leopards and lions with overlapping territories in the Okavango Delta, Botswana. Leopards were found to adapt behaviours and movements when lions were perceived to be nearby. Specifically, roar playbacks elicited longer periods of vigilance than controls, and movement directions were influenced by speaker locations. Further, leopard movements were quicker and more directional after encountering lions. However, adjustments in behaviour and movement were short-lived. The results provide insights into mechanisms used by the leopard to coexist with its competitors and are a useful case study of the methods that could be used to investigate encounter dynamics within other systems

    Tracking and modeling focus of attention in meetings [online]

    Get PDF
    Abstract This thesis addresses the problem of tracking the focus of attention of people. In particular, a system to track the focus of attention of participants in meetings is developed. Obtaining knowledge about a person\u27s focus of attention is an important step towards a better understanding of what people do, how and with what or whom they interact or to what they refer. In meetings, focus of attention can be used to disambiguate the addressees of speech acts, to analyze interaction and for indexing of meeting transcripts. Tracking a user\u27s focus of attention also greatly contributes to the improvement of human­computer interfaces since it can be used to build interfaces and environments that become aware of what the user is paying attention to or with what or whom he is interacting. The direction in which people look; i.e., their gaze, is closely related to their focus of attention. In this thesis, we estimate a subject\u27s focus of attention based on his or her head orientation. While the direction in which someone looks is determined by head orientation and eye gaze, relevant literature suggests that head orientation alone is a su#cient cue for the detection of someone\u27s direction of attention during social interaction. We present experimental results from a user study and from several recorded meetings that support this hypothesis. We have developed a Bayesian approach to model at whom or what someone is look­ ing based on his or her head orientation. To estimate head orientations in meetings, the participants\u27 faces are automatically tracked in the view of a panoramic camera and neural networks are used to estimate their head orientations from pre­processed images of their faces. Using this approach, the focus of attention target of subjects could be correctly identified during 73% of the time in a number of evaluation meet­ ings with four participants. In addition, we have investigated whether a person\u27s focus of attention can be pre­dicted from other cues. Our results show that focus of attention is correlated to who is speaking in a meeting and that it is possible to predict a person\u27s focus of attention based on the information of who is talking or was talking before a given moment. We have trained neural networks to predict at whom a person is looking, based on information about who was speaking. Using this approach we were able to predict who is looking at whom with 63% accuracy on the evaluation meetings using only information about who was speaking. We show that by using both head orientation and speaker information to estimate a person\u27s focus, the accuracy of focus detection can be improved compared to just using one of the modalities for focus estimation. To demonstrate the generality of our approach, we have built a prototype system to demonstrate focus­aware interaction with a household robot and other smart appliances in a room using the developed components for focus of attention tracking. In the demonstration environment, a subject could interact with a simulated household robot, a speech­enabled VCR or with other people in the room, and the recipient of the subject\u27s speech was disambiguated based on the user\u27s direction of attention. Zusammenfassung Die vorliegende Arbeit beschäftigt sich mit der automatischen Bestimmung und Ver­folgung des Aufmerksamkeitsfokus von Personen in Besprechungen. Die Bestimmung des Aufmerksamkeitsfokus von Personen ist zum Verständnis und zur automatischen Auswertung von Besprechungsprotokollen sehr wichtig. So kann damit beispielsweise herausgefunden werden, wer zu einem bestimmten Zeitpunkt wen angesprochen hat beziehungsweise wer wem zugehört hat. Die automatische Bestim­mung des Aufmerksamkeitsfokus kann desweiteren zur Verbesserung von Mensch-Maschine­Schnittstellen benutzt werden. Ein wichtiger Hinweis auf die Richtung, in welche eine Person ihre Aufmerksamkeit richtet, ist die Kopfstellung der Person. Daher wurde ein Verfahren zur Bestimmung der Kopfstellungen von Personen entwickelt. Hierzu wurden künstliche neuronale Netze benutzt, welche als Eingaben vorverarbeitete Bilder des Kopfes einer Person erhalten, und als Ausgabe eine Schätzung der Kopfstellung berechnen. Mit den trainierten Netzen wurde auf Bilddaten neuer Personen, also Personen, deren Bilder nicht in der Trainingsmenge enthalten waren, ein mittlerer Fehler von neun bis zehn Grad für die Bestimmung der horizontalen und vertikalen Kopfstellung erreicht. Desweiteren wird ein probabilistischer Ansatz zur Bestimmung von Aufmerksamkeits­zielen vorgestellt. Es wird hierbei ein Bayes\u27scher Ansatzes verwendet um die A­posterior iWahrscheinlichkeiten verschiedener Aufmerksamkteitsziele, gegeben beobachteter Kopfstellungen einer Person, zu bestimmen. Die entwickelten Ansätze wurden auf mehren Besprechungen mit vier bis fünf Teilnehmern evaluiert. Ein weiterer Beitrag dieser Arbeit ist die Untersuchung, inwieweit sich die Blickrich­tung der Besprechungsteilnehmer basierend darauf, wer gerade spricht, vorhersagen läßt. Es wurde ein Verfahren entwickelt um mit Hilfe von neuronalen Netzen den Fokus einer Person basierend auf einer kurzen Historie der Sprecherkonstellationen zu schätzen. Wir zeigen, dass durch Kombination der bildbasierten und der sprecherbasierten Schätzung des Aufmerksamkeitsfokus eine deutliche verbesserte Schätzung erreicht werden kann. Insgesamt wurde mit dieser Arbeit erstmals ein System vorgestellt um automatisch die Aufmerksamkeit von Personen in einem Besprechungsraum zu verfolgen. Die entwickelten Ansätze und Methoden können auch zur Bestimmung der Aufmerk­samkeit von Personen in anderen Bereichen, insbesondere zur Steuerung von comput­erisierten, interaktiven Umgebungen, verwendet werden. Dies wird an einer Beispielapplikation gezeigt

    Audio-coupled video content understanding of unconstrained video sequences

    Get PDF
    Unconstrained video understanding is a difficult task. The main aim of this thesis is to recognise the nature of objects, activities and environment in a given video clip using both audio and video information. Traditionally, audio and video information has not been applied together for solving such complex task, and for the first time we propose, develop, implement and test a new framework of multi-modal (audio and video) data analysis for context understanding and labelling of unconstrained videos. The framework relies on feature selection techniques and introduces a novel algorithm (PCFS) that is faster than the well-established SFFS algorithm. We use the framework for studying the benefits of combining audio and video information in a number of different problems. We begin by developing two independent content recognition modules. The first one is based on image sequence analysis alone, and uses a range of colour, shape, texture and statistical features from image regions with a trained classifier to recognise the identity of objects, activities and environment present. The second module uses audio information only, and recognises activities and environment. Both of these approaches are preceded by detailed pre-processing to ensure that correct video segments containing both audio and video content are present, and that the developed system can be made robust to changes in camera movement, illumination, random object behaviour etc. For both audio and video analysis, we use a hierarchical approach of multi-stage classification such that difficult classification tasks can be decomposed into simpler and smaller tasks. When combining both modalities, we compare fusion techniques at different levels of integration and propose a novel algorithm that combines advantages of both feature and decision-level fusion. The analysis is evaluated on a large amount of test data comprising unconstrained videos collected for this work. We finally, propose a decision correction algorithm which shows that further steps towards combining multi-modal classification information effectively with semantic knowledge generates the best possible results
    corecore