3,184 research outputs found

    Assistive Formation Maintenance for Human-Led Multi-Robot Systems

    Get PDF
    ©2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 2009 IEEE International Conference on Systems, Man and Cybernetics,11-14 Oct. 2009, San Antonio, TX.DOI: 10.1109/ICSMC.2009.5346357In ground-based military maneuvers, group formations require flexibility when traversing from one point to the next. For a human-led team of semi-autonomous agents, a certain level of awareness demonstrated by the agents regarding the quality of the formation is preferable. Through the use of a Multi-Robot System (MRS), this work combines leader-follower principles augmented by an assistive formation maintenance (AFM) method to improve formation keeping and demonstrate a formation-in-motion concept. This is achieved using the Robot Mean Task Allocation method (RTMA), a strategy used to allocate formation positions to each unit within a continuously mobile MRS. The end goal is to provide a military application that allows a soldier to efficiently tele-operate a semi-autonomous MRS capable of holding formation amidst a cluttered environment. Baseline simulation is performed in Player/Stage to show the applicability of our developed model and its potential for expansive research

    GUARDIANS final report part 1 (draft): a robot swarm assisting a human fire fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire fighters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist re ghters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting re ghters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus the robot swarm is able to provide guidance information to the humans. Together with the fire fighters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Towards human-friendly efficient control of multi-robot teams

    Get PDF
    This paper explores means to increase efficiency in performing tasks with multi-robot teams, in the context of natural Human-Multi-Robot Interfaces (HMRI) for command and control. The motivating scenario is an emergency evacuation by a transport convoy of unmanned ground vehicles (UGVs) that have to traverse, in shortest time, an unknown terrain. In the experiments the operator commands, in minimal time, a group of rovers through a maze. The efficiency of performing such tasks depends on both, the levels of robots' autonomy, and the ability of the operator to command and control the team. The paper extends the classic framework of levels of autonomy (LOA), to levels/hierarchy of autonomy characteristic of Groups (G-LOA), and uses it to determine new strategies for control. An UGVoriented command language (UGVL) is defined, and a mapping is performed from the human-friendly gesture-based HMRI into the UGVL. The UGVL is used to control a team of 3 robots, exploring the efficiency of different G-LOA; specifically, by (a) controlling each robot individually through the maze, (b) controlling a leader and cloning its controls to followers, and (c) controlling the entire group. Not surprisingly, commands at increased G-LOA lead to a faster traverse, yet a number of aspects are worth discussing in this context

    Future bathroom: A study of user-centred design principles affecting usability, safety and satisfaction in bathrooms for people living with disabilities

    Get PDF
    Research and development work relating to assistive technology 2010-11 (Department of Health) Presented to Parliament pursuant to Section 22 of the Chronically Sick and Disabled Persons Act 197

    Communicating with Humans and Robots: A Motion Tracking Data Glove for Enhanced Support of Deafblind

    Get PDF
    In this work, we discuss the design and development of a communication system for enhanced support of the deafblind. The system is based on an advanced motion tracking Data Glove that allows for high fidelity determination of finger postures with consequent identification of the basic Malossi alphabet signs. A natural, easy-to-master alphabet extension that supports single-hand signing without touch surface sensing is described, and different scenarios for its use are discussed. The focus is on using the extended Malossi alphabet as a communication medium in a Data Glove-based interface for remote messaging and interactive control of mobile robots. This may be of particular interest to the deafblind community, where distant communications and robotized support and services are rising. The designed Data Glove-based communication interface requires minimal adjustments to the Malossi alphabet and can be mastered after a short training period. The natural interaction style supported by the Data Glove and the popularity of the Malossi alphabet among the deafblind should greatly facilitate the wider adoption of the developed interface

    Cyber-Physical Production Testbed: Literature Review and Concept Development

    Get PDF
    Many researchers use virtual and simulation-based testbed technology for research in production and maintenance optimization. Although, the virtual environment produces good results, it cannot imitate the unexpected changes that occur in actual production. There are very few physical testbeds emulating actual production environment. The aim of this paper is to present a concept of a cyber-physical production testbed based on review of Cyber-Physical Systems (CPS) testbeds in research. The testbed consists of a semi-automatic production line equipped with system monitoring tools, data analysis capabilities and commercial software. This testbed will be used for demonstration of data acquisition for production and maintenance prioritization. Additionally, the testbed will be used for research in IoT platforms for production optimization

    History of the Institut de Robòtica i Informàtica Industrial

    Get PDF
    The Institut de Robòtica i Informàtica Industrial is a Joint University Research Institute participated by the Spanish National Research Council and the Universitat Politècnica de Catalunya. Founded in 1995, its scientists have addressed over the years many research topics spanning from robot kinematics, to computer graphics, automatic control, energy systems, and human-robot interaction, among others. This book, prepared for its 25th anniversary, covers its evolution over the years, and serves as a mean of appreciation to the many students, administrative personnel, research engineers, or scientists that have formed part of it.Postprint (published version
    corecore