1,405 research outputs found

    Cody: An AI-Based System to Semi-Automate Coding for Qualitative Research

    Get PDF
    Qualitative research can produce a rich understanding of a phenomenon but requires an essential and strenuous data annotation process known as coding. Coding can be repetitive and time-consuming, particularly for large datasets. Existing AI-based approaches for partially automating coding, like supervised machine learning (ML) or explicit knowledge represented in code rules, require high technical literacy and lack transparency. Further, little is known about the interaction of researchers with AI-based coding assistance. We introduce Cody, an AI-based system that semi-automates coding through code rules and supervised ML. Cody supports researchers with interactively (re)defining code rules and uses ML to extend coding to unseen data. In two studies with qualitative researchers, we found that (1) code rules provide structure and transparency, (2) explanations are commonly desired but rarely used, (3) suggestions benefit coding quality rather than coding speed, increasing the intercoder reliability, calculated with Krippendorff’s Alpha, from 0.085 (MAXQDA) to 0.33 (Cody)

    Robot-Enabled Construction Assembly with Automated Sequence Planning based on ChatGPT: RoboGPT

    Full text link
    Robot-based assembly in construction has emerged as a promising solution to address numerous challenges such as increasing costs, labor shortages, and the demand for safe and efficient construction processes. One of the main obstacles in realizing the full potential of these robotic systems is the need for effective and efficient sequence planning for construction tasks. Current approaches, including mathematical and heuristic techniques or machine learning methods, face limitations in their adaptability and scalability to dynamic construction environments. To expand the ability of the current robot system in sequential understanding, this paper introduces RoboGPT, a novel system that leverages the advanced reasoning capabilities of ChatGPT, a large language model, for automated sequence planning in robot-based assembly applied to construction tasks. The proposed system adapts ChatGPT for construction sequence planning and demonstrate its feasibility and effectiveness through experimental evaluation including Two case studies and 80 trials about real construction tasks. The results show that RoboGPT-driven robots can handle complex construction operations and adapt to changes on the fly. This paper contributes to the ongoing efforts to enhance the capabilities and performance of robot-based assembly systems in the construction industry, and it paves the way for further integration of large language model technologies in the field of construction robotics.Comment: 14 pages, 20 figures, submitted to IEEE Acces

    Designing AI-Based Systems for Qualitative Data Collection and Analysis

    Get PDF
    With the continuously increasing impact of information systems (IS) on private and professional life, it has become crucial to integrate users in the IS development process. One of the critical reasons for failed IS projects is the inability to accurately meet user requirements, resulting from an incomplete or inaccurate collection of requirements during the requirements elicitation (RE) phase. While interviews are the most effective RE technique, they face several challenges that make them a questionable fit for the numerous, heterogeneous, and geographically distributed users of contemporary IS. Three significant challenges limit the involvement of a large number of users in IS development processes today. Firstly, there is a lack of tool support to conduct interviews with a wide audience. While initial studies show promising results in utilizing text-based conversational agents (chatbots) as interviewer substitutes, we lack design knowledge for designing AI-based chatbots that leverage established interviewing techniques in the context of RE. By successfully applying chatbot-based interviewing, vast amounts of qualitative data can be collected. Secondly, there is a need to provide tool support enabling the analysis of large amounts of qualitative interview data. Once again, while modern technologies, such as machine learning (ML), promise remedy, concrete implementations of automated analysis for unstructured qualitative data lag behind the promise. There is a need to design interactive ML (IML) systems for supporting the coding process of qualitative data, which centers around simple interaction formats to teach the ML system, and transparent and understandable suggestions to support data analysis. Thirdly, while organizations rely on online feedback to inform requirements without explicitly conducting RE interviews (e.g., from app stores), we know little about the demographics of who is giving feedback and what motivates them to do so. Using online feedback as requirement source risks including solely the concerns and desires of vocal user groups. With this thesis, I tackle these three challenges in two parts. In part I, I address the first and the second challenge by presenting and evaluating two innovative AI-based systems, a chatbot for requirements elicitation and an IML system to semi-automate qualitative coding. In part II, I address the third challenge by presenting results from a large-scale study on IS feedback engagement. With both parts, I contribute with prescriptive knowledge for designing AI-based qualitative data collection and analysis systems and help to establish a deeper understanding of the coverage of existing data collected from online sources. Besides providing concrete artifacts, architectures, and evaluations, I demonstrate the application of a chatbot interviewer to understand user values in smartphones and provide guidance for extending feedback coverage from underrepresented IS user groups

    Digitised engineering knowledge for prefabricated façades

    Get PDF
    Façade design is a multidisciplinary activity requiring the balancing of many conflicting design requirements. Very often, however, the designed façade does not respond to these requirement, as relevant design and manufacturing knowledge, normally originating downstream in the design process, is not properly used upstream in the process. The inability to respond to this challenge increases the environmental impact of the construction sector, which is currently covering nearly 40% of the global emissions. Also, improving the stagnant sector’s productivity is of paramount importance today, as it is deemed to be nearly as half as that of the manufacturing sector. This research has thus investigated ways to collect, store, represent and digitalise the engineering knowledge that underpins the design of façade products for façades that are better designed. The work has involved a close collaboration with the British general contractor (and façade manufacturer) Laing O’Rourke. The research has explored ways of using design and manufacturing knowledge and it has developed a digital tool and tested its functionalities. In the first part, after a review of the state-of-the-art in knowledge-based approaches in other fields, the digital tool, and relevant methodology, are developed. The tool informs the user about the expected performance and manufacturability of the façade product under analysis. The boundaries of traditional research were also pushed beyond the proof-of-concept by validating the digital tool in both simulated and real-world scenarios. The goal was to understand how people can develop a design solution while being supported by a digital tool. It was found that using such tool increases the user’s awareness about the consequences of the his/her choices in less time. In the last part of the research, the tool was used to develop a novel optimisation algorithm, by including considerations about aesthetics and manufacturability, in parallel with the traditional performance-based approach. The application of the algorithm to a case study has shown that it is possible to improve existing solutions in terms of performance, without affecting aesthetic and manufacturability significantly.EPSRC, Laing O'Rourk

    Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda

    Get PDF
    Autonomous mobile robots (AMR) are currently being introduced in many intralogistics operations, like manufacturing, warehousing, cross-docks, terminals, and hospitals. Their advanced hardware and control software allow autonomous operations in dynamic environments. Compared to an automated guided vehicle (AGV) system in which a central unit takes control of scheduling, routing, and dispatching decisions for all AGVs, AMRs can communicate and negotiate independently with other resources like machines and systems and thus decentralize the decision-making process. Decentralized decision-making allows the system to react dynamically to changes in the system state and environment. These developments have influenced the traditional methods and decision-making processes for planning and control. This study identifies and classifies research related to the planning and control of AMRs in intralogistics. We provide an extended literature review that highlights how AMR technological advances affect planning and control decisions. We contribute to the literature by introducing an AMR planning and control framework t

    How to keep drivers engaged while supervising driving automation? A literature survey and categorization of six solution areas

    Get PDF
    This work aimed to organise recommendations for keeping people engaged during human supervision of driving automation, encouraging a safe and acceptable introduction of automated driving systems. First, heuristic knowledge of human factors, ergonomics, and psychological theory was used to propose solution areas to human supervisory control problems of sustained attention. Driving and non-driving research examples were drawn to substantiate the solution areas. Automotive manufacturers might (1) avoid this supervisory role altogether, (2) reduce it in objective ways or (3) alter its subjective experiences, (4) utilize conditioning learning principles such as with gamification and/or selection/training techniques, (5) support internal driver cognitive processes and mental models and/or (6) leverage externally situated information regarding relations between the driver, the driving task, and the driving environment. Second, a cross-domain literature survey of influential human-automation interaction research was conducted for how to keep engagement/attention in supervisory control. The solution areas (via numeric theme codes) were found to be reliably applied from independent rater categorisations of research recommendations. Areas (5) and (6) were addressed by around 70% or more of the studies, areas (2) and (4) in around 50% of the studies, and areas (3) and (1) in less than around 20% and 5%, respectively. The present contribution offers a guiding organisational framework towards improving human attention while supervising driving automation.submittedVersio

    MLCAD: A Survey of Research in Machine Learning for CAD Keynote Paper

    Get PDF
    • …
    corecore