1,420 research outputs found

    Comparative Analysis of Segment Anything Model and U-Net for Breast Tumor Detection in Ultrasound and Mammography Images

    Full text link
    In this study, the main objective is to develop an algorithm capable of identifying and delineating tumor regions in breast ultrasound (BUS) and mammographic images. The technique employs two advanced deep learning architectures, namely U-Net and pretrained SAM, for tumor segmentation. The U-Net model is specifically designed for medical image segmentation and leverages its deep convolutional neural network framework to extract meaningful features from input images. On the other hand, the pretrained SAM architecture incorporates a mechanism to capture spatial dependencies and generate segmentation results. Evaluation is conducted on a diverse dataset containing annotated tumor regions in BUS and mammographic images, covering both benign and malignant tumors. This dataset enables a comprehensive assessment of the algorithm's performance across different tumor types. Results demonstrate that the U-Net model outperforms the pretrained SAM architecture in accurately identifying and segmenting tumor regions in both BUS and mammographic images. The U-Net exhibits superior performance in challenging cases involving irregular shapes, indistinct boundaries, and high tumor heterogeneity. In contrast, the pretrained SAM architecture exhibits limitations in accurately identifying tumor areas, particularly for malignant tumors and objects with weak boundaries or complex shapes. These findings highlight the importance of selecting appropriate deep learning architectures tailored for medical image segmentation. The U-Net model showcases its potential as a robust and accurate tool for tumor detection, while the pretrained SAM architecture suggests the need for further improvements to enhance segmentation performance

    Towards Secure and Intelligent Diagnosis: Deep Learning and Blockchain Technology for Computer-Aided Diagnosis Systems

    Get PDF
    Cancer is the second leading cause of death across the world after cardiovascular disease. The survival rate of patients with cancerous tissue can significantly decrease due to late-stage diagnosis. Nowadays, advancements of whole slide imaging scanners have resulted in a dramatic increase of patient data in the domain of digital pathology. Large-scale histopathology images need to be analyzed promptly for early cancer detection which is critical for improving patient's survival rate and treatment planning. Advances of medical image processing and deep learning methods have facilitated the extraction and analysis of high-level features from histopathological data that could assist in life-critical diagnosis and reduce the considerable healthcare cost associated with cancer. In clinical trials, due to the complexity and large variance of collected image data, developing computer-aided diagnosis systems to support quantitative medical image analysis is an area of active research. The first goal of this research is to automate the classification and segmentation process of cancerous regions in histopathology images of different cancer tissues by developing models using deep learning-based architectures. In this research, a framework with different modules is proposed, including (1) data pre-processing, (2) data augmentation, (3) feature extraction, and (4) deep learning architectures. Four validation studies were designed to conduct this research. (1) differentiating benign and malignant lesions in breast cancer (2) differentiating between immature leukemic blasts and normal cells in leukemia cancer (3) differentiating benign and malignant regions in lung cancer, and (4) differentiating benign and malignant regions in colorectal cancer. Training machine learning models, disease diagnosis, and treatment often requires collecting patients' medical data. Privacy and trusted authenticity concerns make data owners reluctant to share their personal and medical data. Motivated by the advantages of Blockchain technology in healthcare data sharing frameworks, the focus of the second part of this research is to integrate Blockchain technology in computer-aided diagnosis systems to address the problems of managing access control, authentication, provenance, and confidentiality of sensitive medical data. To do so, a hierarchical identity and attribute-based access control mechanism using smart contract and Ethereum Blockchain is proposed to securely process healthcare data without revealing sensitive information to an unauthorized party leveraging the trustworthiness of transactions in a collaborative healthcare environment. The proposed access control mechanism provides a solution to the challenges associated with centralized access control systems and ensures data transparency and traceability for secure data sharing, and data ownership

    Diagnóstico automático de melanoma mediante técnicas modernas de aprendizaje automático

    Get PDF
    The incidence and mortality rates of skin cancer remain a huge concern in many countries. According to the latest statistics about melanoma skin cancer, only in the Unites States, 7,650 deaths are expected in 2022, which represents 800 and 470 more deaths than 2020 and 2021, respectively. In 2022, melanoma is ranked as the fifth cause of new cases of cancer, with a total of 99,780 people. This illness is mainly diagnosed with a visual inspection of the skin, then, if doubts remain, a dermoscopic analysis is performed. The development of e_ective non-invasive diagnostic tools for the early stages of the illness should increase quality of life, and decrease the required economic resources. The early diagnosis of skin lesions remains a tough task even for expert dermatologists because of the complexity, variability, dubiousness of the symptoms, and similarities between the different categories among skin lesions. To achieve this goal, previous works have shown that early diagnosis from skin images can benefit greatly from using computational methods. Several studies have applied handcrafted-based methods on high quality dermoscopic and histological images, and on top of that, machine learning techniques, such as the k-nearest neighbors approach, support vector machines and random forest. However, one must bear in mind that although the previous extraction of handcrafted features incorporates an important knowledge base into the analysis, the quality of the extracted descriptors relies heavily on the contribution of experts. Lesion segmentation is also performed manually. The above procedures have a common issue: they are time-consuming manual processes prone to errors. Furthermore, an explicit definition of an intuitive and interpretable feature is hardly achievable, since it depends on pixel intensity space and, therefore, they are not invariant regarding the differences in the input images. On the other hand, the use of mobile devices has sharply increased, which offers an almost unlimited source of data. In the past few years, more and more attention has been paid to designing deep learning models for diagnosing melanoma, more specifically Convolutional Neural Networks. This type of model is able to extract and learn high-level features from raw images and/or other data without the intervention of experts. Several studies showed that deep learning models can overcome handcrafted-based methods, and even match the predictive performance of dermatologists. The International Skin Imaging Collaboration encourages the development of methods for digital skin imaging. Every year since 2016 to 2019, a challenge and a conference have been organized, in which more than 185 teams have participated. However, convolutional models present several issues for skin diagnosis. These models can fit on a wide diversity of non-linear data points, being prone to overfitting on datasets with small numbers of training examples per class and, therefore, attaining a poor generalization capacity. On the other hand, this type of model is sensitive to some characteristics in data, such as large inter-class similarities and intra-class variances, variations in viewpoints, changes in lighting conditions, occlusions, and background clutter, which can be mostly found in non-dermoscopic images. These issues represent challenges for the application of automatic diagnosis techniques in the early phases of the illness. As a consequence of the above, the aim of this Ph.D. thesis is to make significant contributions to the automatic diagnosis of melanoma. The proposals aim to avoid overfitting and improve the generalization capacity of deep models, as well as to achieve a more stable learning and better convergence. Bear in mind that research into deep learning commonly requires an overwhelming processing power in order to train complex architectures. For example, when developing NASNet architecture, researchers used 500 x NVidia P100s - each graphic unit cost from 5,899to5,899 to 7,374, which represents a total of 2,949,500.002,949,500.00 - 3,687,000.00. Unfortunately, the majority of research groups do not have access to such resources, including ours. In this Ph.D. thesis, the use of several techniques has been explored. First, an extensive experimental study was carried out, which included state-of-the-art models and methods to further increase the performance. Well-known techniques were applied, such as data augmentation and transfer learning. Data augmentation is performed in order to balance out the number of instances per category and act as a regularizer in preventing overfitting in neural networks. On the other hand, transfer learning uses weights of a pre-trained model from another task, as the initial condition for the learning of the target network. Results demonstrate that the automatic diagnosis of melanoma is a complex task. However, different techniques are able to mitigate such issues in some degree. Finally, suggestions are given about how to train convolutional models for melanoma diagnosis and future interesting research lines were presented. Next, the discovery of ensemble-based architectures is tackled by using genetic algorithms. The proposal is able to stabilize the training process. This is made possible by finding sub-optimal combinations of abstract features from the ensemble, which are used to train a convolutional block. Then, several predictive blocks are trained at the same time, and the final diagnosis is achieved by combining all individual predictions. We empirically investigate the benefits of the proposal, which shows better convergence, mitigates the overfitting of the model, and improves the generalization performance. On top of that, the proposed model is available online and can be consulted by experts. The next proposal is focused on designing an advanced architecture capable of fusing classical convolutional blocks and a novel model known as Dynamic Routing Between Capsules. This approach addresses the limitations of convolutional blocks by using a set of neurons instead of an individual neuron in order to represent objects. An implicit description of the objects is learned by each capsule, such as position, size, texture, deformation, and orientation. In addition, a hyper-tuning of the main parameters is carried out in order to ensure e_ective learning under limited training data. An extensive experimental study was conducted where the fusion of both methods outperformed six state-of-the-art models. On the other hand, a robust method for melanoma diagnosis, which is inspired on residual connections and Generative Adversarial Networks, is proposed. The architecture is able to produce plausible photorealistic synthetic 512 x 512 skin images, even with small dermoscopic and non-dermoscopic skin image datasets as problema domains. In this manner, the lack of data, the imbalance problems, and the overfitting issues are tackled. Finally, several convolutional modes are extensively trained and evaluated by using the synthetic images, illustrating its effectiveness in the diagnosis of melanoma. In addition, a framework, which is inspired on Active Learning, is proposed. The batch-based query strategy setting proposed in this work enables a more faster training process by learning about the complexity of the data. Such complexities allow us to adjust the training process after each epoch, which leads the model to achieve better performance in a lower number of iterations compared to random mini-batch sampling. Then, the training method is assessed by analyzing both the informativeness value of each image and the predictive performance of the models. An extensive experimental study is conducted, where models trained with the proposal attain significantly better results than the baseline models. The findings suggest that there is still space for improvement in the diagnosis of skin lesions. Structured laboratory data, unstructured narrative data, and in some cases, audio or observational data, are given by radiologists as key points during the interpretation of the prediction. This is particularly true in the diagnosis of melanoma, where substantial clinical context is often essential. For example, symptoms like itches and several shots of a skin lesion during a period of time proving that the lesion is growing, are very likely to suggest cancer. The use of different types of input data could help to improve the performance of medical predictive models. In this regard, a _rst evolutionary algorithm aimed at exploring multimodal multiclass data has been proposed, which surpassed a single-input model. Furthermore, the predictive features extracted by primary capsules could be used to train other models, such as Support Vector Machine

    Artificial intelligence : A powerful paradigm for scientific research

    Get PDF
    Y Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.Peer reviewe

    Computational Methods for Pigmented Skin Lesion Classification in Images: Review and Future Trends

    Get PDF
    Skin cancer is considered as one of the most common types of cancer in several countries, and its incidence rate has increased in recent years. Melanoma cases have caused an increasing number of deaths worldwide, since this type of skin cancer is the most aggressive compared to other types. Computational methods have been developed to assist dermatologists in early diagnosis of skin cancer. An overview of the main and current computational methods that have been proposed for pattern analysis and pigmented skin lesion classification is addressed in this review. In addition, a discussion about the application of such methods, as well as future trends, is also provided. Several methods for feature extraction from both macroscopic and dermoscopic images and models for feature selection are introduced and discussed. Furthermore, classification algorithms and evaluation procedures are described, and performance results for lesion classification and pattern analysis are given

    Machine Learning Models for Deciphering Regulatory Mechanisms and Morphological Variations in Cancer

    Get PDF
    The exponential growth of multi-omics biological datasets is resulting in an emerging paradigm shift in fundamental biological research. In recent years, imaging and transcriptomics datasets are increasingly incorporated into biological studies, pushing biology further into the domain of data-intensive-sciences. New approaches and tools from statistics, computer science, and data engineering are profoundly influencing biological research. Harnessing this ever-growing deluge of multi-omics biological data requires the development of novel and creative computational approaches. In parallel, fundamental research in data sciences and Artificial Intelligence (AI) has advanced tremendously, allowing the scientific community to generate a massive amount of knowledge from data. Advances in Deep Learning (DL), in particular, are transforming many branches of engineering, science, and technology. Several of these methodologies have already been adapted for harnessing biological datasets; however, there is still a need to further adapt and tailor these techniques to new and emerging technologies. In this dissertation, we present computational algorithms and tools that we have developed to study gene-regulation and cellular morphology in cancer. The models and platforms that we have developed are general and widely applicable to several problems relating to dysregulation of gene expression in diseases. Our pipelines and software packages are disseminated in public repositories for larger scientific community use. This dissertation is organized in three main projects. In the first project, we present Causal Inference Engine (CIE), an integrated platform for the identification and interpretation of active regulators of transcriptional response. The platform offers visualization tools and pathway enrichment analysis to map predicted regulators to Reactome pathways. We provide a parallelized R-package for fast and flexible directional enrichment analysis to run the inference on custom regulatory networks. Next, we designed and developed MODEX, a fully automated text-mining system to extract and annotate causal regulatory interaction between Transcription Factors (TFs) and genes from the biomedical literature. MODEX uses putative TF-gene interactions derived from high-throughput ChIP-Seq or other experiments and seeks to collect evidence and meta-data in the biomedical literature to validate and annotate the interactions. MODEX is a complementary platform to CIE that provides auxiliary information on CIE inferred interactions by mining the literature. In the second project, we present a Convolutional Neural Network (CNN) classifier to perform a pan-cancer analysis of tumor morphology, and predict mutations in key genes. The main challenges were to determine morphological features underlying a genetic status and assess whether these features were common in other cancer types. We trained an Inception-v3 based model to predict TP53 mutation in five cancer types with the highest rate of TP53 mutations. We also performed a cross-classification analysis to assess shared morphological features across multiple cancer types. Further, we applied a similar methodology to classify HER2 status in breast cancer and predict response to treatment in HER2 positive samples. For this study, our training slides were manually annotated by expert pathologists to highlight Regions of Interest (ROIs) associated with HER2+/- tumor microenvironment. Our results indicated that there are strong morphological features associated with each tumor type. Moreover, our predictions highly agree with manual annotations in the test set, indicating the feasibility of our approach in devising an image-based diagnostic tool for HER2 status and treatment response prediction. We have validated our model using samples from an independent cohort, which demonstrates the generalizability of our approach. Finally, in the third project, we present an approach to use spatial transcriptomics data to predict spatially-resolved active gene regulatory mechanisms in tissues. Using spatial transcriptomics, we identified tissue regions with differentially expressed genes and applied our CIE methodology to predict active TFs that can potentially regulate the marker genes in the region. This project bridged the gap between inference of active regulators using molecular data and morphological studies using images. The results demonstrate a significant local pattern in TF activity across the tissue, indicating differential spatial-regulation in tissues. The results suggest that the integrative analysis of spatial transcriptomics data with CIE can capture discriminant features and identify localized TF-target links in the tissue
    corecore