1,529 research outputs found

    Assisted Entanglement Distillation

    Full text link
    Motivated by the problem of designing quantum repeaters, we study entanglement distillation between two parties, Alice and Bob, starting from a mixed state and with the help of "repeater" stations. To treat the case of a single repeater, we extend the notion of entanglement of assistance to arbitrary mixed tripartite states and exhibit a protocol, based on a random coding strategy, for extracting pure entanglement. The rates achievable by this protocol formally resemble those achievable if the repeater station could merge its state to one of Alice and Bob even when such merging is impossible. This rate is provably better than the hashing bound for sufficiently pure tripartite states. We also compare our assisted distillation protocol to a hierarchical strategy consisting of entanglement distillation followed by entanglement swapping. We demonstrate by the use of a simple example that our random measurement strategy outperforms hierarchical distillation strategies when the individual helper stations' states fail to individually factorize into portions associated specifically with Alice and Bob. Finally, we use these results to find achievable rates for the more general scenario, where many spatially separated repeaters help two recipients distill entanglement.Comment: 25 pages, 4 figure

    Unconstrained distillation capacities of a pure-loss bosonic broadcast channel

    Get PDF
    Bosonic channels are important in practice as they form a simple model for free-space or fiber-optic communication. Here we consider a single-sender two-receiver pure-loss bosonic broadcast channel and determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. We show how the state merging protocol leads to achievable rates in this setting, giving an inner bound on the capacity region. We also evaluate an outer bound on the region by using the relative entropy of entanglement and a `reduction by teleportation' technique. The outer bounds match the inner bounds in the infinite-energy limit, thereby establishing the unconstrained capacity region for such channels. Our result could provide a useful benchmark for implementing a broadcasting of entanglement and secret key through such channels. An important open question relevant to practice is to determine the capacity region in both this setting and the single-sender single-receiver case when there is an energy constraint on the transmitter.Comment: v2: 6 pages, 3 figures, introduction revised, appendix added where the result is extended to the 1-to-m pure-loss bosonic broadcast channel. v3: minor revision, typo error correcte
    • …
    corecore