11,412 research outputs found

    How to Commission, Operate and Maintain a Large Future Accelerator Complex from Far Remote

    Get PDF
    A study on future large accelerators [1] has considered a facility, which is designed, built and operated by a worldwide collaboration of equal partner institutions, and which is remote from most of these institutions. The full range of operation was considered including commi-ssioning, machine development, maintenance, trouble shooting and repair. Experience from existing accele-rators confirms that most of these activities are already performed 'remotely'. The large high-energy physics ex-periments and astronomy projects, already involve inter-national collaborations of distant institutions. Based on this experience, the prospects for a machine operated remotely from far sites are encouraging. Experts from each laboratory would remain at their home institution but continue to participate in the operation of the machine after construction. Experts are required to be on site only during initial commissioning and for par-ticularly difficult problems. Repairs require an on-site non-expert maintenance crew. Most of the interventions can be made without an expert and many of the rest resolved with remote assistance. There appears to be no technical obstacle to controlling an accelerator from a distance. The major challenge is to solve the complex management and communication problems.Comment: ICALEPCS 2001 abstract ID No. FRBI001 invited talk submitting author F. Willeke 5 pages, 1 figur

    OFMTutor: An operator function model intelligent tutoring system

    Get PDF
    The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described

    New Tasks in Old Jobs: Drivers of Change and Implications for Job Quality

    Get PDF
    This overview report summarises the findings of 20 case studies looking at recent changes in the task content of five manufacturing occupations (car assemblers, meat processing workers, hand-packers, chemical products plant and machine operators and inspection engineers) as a result of factors such as digital transformations, globalisation and offshoring, increasing demand for high quality standards and sustainability. It also discusses some implications in terms of job quality and working life. The study reveals that the importance of physical tasks in manufacturing is generally declining due to automation; that more intensive use of digitally controlled equipment, together with increasing importance of quality standards, involve instead a growing amount of intellectual tasks for manual industrial workers; and that the amount of routine task content is still high in the four manual occupations studied. Overall, the report highlights how qualitative contextual information can complement existing quantitative data, offering a richer understanding of changes in the content and nature of jobs

    Expert system technology

    Get PDF
    The expert system is a computer program which attempts to reproduce the problem-solving behavior of an expert, who is able to view problems from a broad perspective and arrive at conclusions rapidly, using intuition, shortcuts, and analogies to previous situations. Expert systems are a departure from the usual artificial intelligence approach to problem solving. Researchers have traditionally tried to develop general modes of human intelligence that could be applied to many different situations. Expert systems, on the other hand, tend to rely on large quantities of domain specific knowledge, much of it heuristic. The reasoning component of the system is relatively simple and straightforward. For this reason, expert systems are often called knowledge based systems. The report expands on the foregoing. Section 1 discusses the architecture of a typical expert system. Section 2 deals with the characteristics that make a problem a suitable candidate for expert system solution. Section 3 surveys current technology, describing some of the software aids available for expert system development. Section 4 discusses the limitations of the latter. The concluding section makes predictions of future trends

    MITT writer and MITT writer advanced development: Developing authoring and training systems for complex technical domains

    Get PDF
    MITT Writer is a software system for developing computer based training for complex technical domains. A training system produced by MITT Writer allows a student to learn and practice troubleshooting and diagnostic skills. The MITT (Microcomputer Intelligence for Technical Training) architecture is a reasonable approach to simulation based diagnostic training. MITT delivers training on available computing equipment, delivers challenging training and simulation scenarios, and has economical development and maintenance costs. A 15 month effort was undertaken in which the MITT Writer system was developed. A workshop was also conducted to train instructors in how to use MITT Writer. Earlier versions were used to develop an Intelligent Tutoring System for troubleshooting the Minuteman Missile Message Processing System

    ALLY: An operator's associate for satellite ground control systems

    Get PDF
    The key characteristics of an intelligent advisory system is explored. A central feature is that human-machine cooperation should be based on a metaphor of human-to-human cooperation. ALLY, a computer-based operator's associate which is based on a preliminary theory of human-to-human cooperation, is discussed. ALLY assists the operator in carrying out the supervisory control functions for a simulated NASA ground control system. Experimental evaluation of ALLY indicates that operators using ALLY performed at least as well as they did when using a human associate and in some cases even better

    IMMERSIVE, INTEROPERABLE AND INTUITIVE MIXED REALITY FOR SERVICE IN INDUSTRIAL PLANTS

    Get PDF
    The authors propose an innovative Mixed Reality solution representing an immersive intuitive and interoperable environment to support service in industrial plants. These methodologies are related to concepts of Industry 4.0. Solutions based on a mix of VR and AR (Virtual and Augmented Reality ) with special attention to the maintenance of industrial machines; indeed the authors propose an overview of this approach and other synergistic techniques. Moreover, alternative instruments are presented and their specific advantages and disadvantages are described. Particularly, the approach is based on the SPIDER, an advanced interoperable interactive CAVE developed by the authors which supports cooperative work of several users involved in training, troubleshooting and supervision are proposed. Last but not least, an overview of projects using same techniques in other fields, such as construction, risk assessment, Virtual Prototyping and Simulation Based Design is presented

    Live, virtual, and constructive environments for performance support

    Get PDF
    As military systems become more complex, the operation and support of these systems becomes intrinsically more difficult. The U.S. Army\u27s current procurement process relies on industry to provide embedded training and performance support tools for the systems they produce. These tools are relatively new and in the early stages of development. As yet, they have failed to meet the needs of the technicians that are required to support these complex systems. Current efforts to provide enabling technologies that enhance the capabilities of automotive maintenance technicians are concentrated in three professional communities. First is the Performance Improvement community where work is focused on developing and implementing performance support system technologies that deliver information that is stored in information systems. Second is the Knowledge Management community working on organizational knowledge management techniques that capture, store, and map information that is delivered to workers within an organization. The third is the Training and Education community focusing on developing curriculum and delivery systems that support life-long-learning requirements. This dissertation addresses an essential component of performance systems, namely the ability to deliver the knowledge needed to guide a problem solver to a solution state, thereby enhancing worker capabilities. This objective is met by developing the LockTel Framework that provides a construct for segmenting knowledge into three environments for performance support, the live, the virtual, and the constructive environments. It provides a means for the maintenance technician to gain knowledge associated with completing a given task. Seventy-eight maintenance technician trainees at an U.S. Army training center tested the framework. The hypothesis behind the proposed construct was strongly supported, thereby establishing the foundation for future work in live, virtual, and constructive environments for performance support
    corecore