2,846 research outputs found

    GA and ACO Algorithms Applied to Optimizing Location of Controllers in Wireless Networks

    Get PDF
    Optimizing location of controllers in wireless networks is an important problem in the cellular mobile networks designing. In this paper, I present two algorithms based on Genetic Algorithm (GA) and Ant Colony Optimization (ACO) to solve it. In the first algorithm, my objective function is determined by the total distance based on finding maximum flow in a bipartite graph using Ford-Fulkerson algorithm. In the second algorithm, I generate pheromone matrix of ants and calculate the pheromone content of the path from controller i to base station j using the neighborhood includes only locations that have not been visited by ant k when it is at controller i. At each step of iterations, I choose good solutions satisfying capacity constraints and update step by step to find the best solution depending on my cost functions. I evaluate the performance of my algorithms to optimize location of controllers in wireless networks by comparing to SA, SA-Greedy, LB-Greedy algorithm. Numerical results show that my algorithms proposed have achieved much better more than other algorithms.DOI:http://dx.doi.org/10.11591/ijece.v3i2.229

    PCS: regulation and markets

    Get PDF
    Wireless personal communications technologies are about to enter their second decisive stage of development. Stage one was incremental, supplementing wireline communications networks. Stage two is radical, offering both synergy and substitution, and heralds a third, revolutionary stage in which all that is fixed becomes mobile. Stage two will be one of transition from an environment of limited bandwidths and small but rapidly growing markets, to a world of re-usable and re-assignable spectrum interconnecting with broadband networks for a mass market. Regulating the transition is a controversial process. Spectrum is regarded as a scarce resource which requires careful management in the public interest, yet Hong Kong policy moves in the direction of market solutions. The regulator is therefore required to perform a balancing act between the interests of different parties: the existingwireline and wireless operators, the new entrants, future new entrants, existing customers and future customers, and Hong Kong’s reputation as a progressive free market.published_or_final_versio

    A Heuristics Based Approach for Cellular Mobile Network Planning

    Get PDF
    ABSTRACT Designing and planning of the switching, signaling and support network is a fairly complex process in cellular mobile network. In this paper, the problem of assigning cells to switches in cellular mobile network, which is considered a planning problem, is addressed. The cell to switch assignment problem which falls under the category of the Quadratic Assignment Problem (QAP) is a proven NP– hard problem. Further, the problem is modelled to include an additional constraint in the formulation. The additional constraint is of the maximum number of switch ports that are used for a cell's Base Station Transceiver System (BTS) connectivity to the switch. The addition of the constraint on the number of ports on a switch has immense practical signicance. This paper presents a non– deterministic heuristic based on Simulated Evolution (SimE) iterative algorithm to provide solutions. The methods adopted in this paper are a completely innovative formulation of the problem and involve application of Evolutionary Computing for this complex problem that may be extended to solutions of similar problems in VLSI design, distributed computing and many other applications

    Random Parametric Perturbations of Gene Regulatory Circuit Uncover State Transitions in Cell Cycle.

    Get PDF
    Many biological processes involve precise cellular state transitions controlled by complex gene regulation. Here, we use budding yeast cell cycle as a model system and explore how a gene regulatory circuit encodes essential information of state transitions. We present a generalized random circuit perturbation method for circuits containing heterogeneous regulation types and its usage to analyze both steady and oscillatory states from an ensemble of circuit models with random kinetic parameters. The stable steady states form robust clusters with a circular structure that are associated with cell cycle phases. This circular structure in the clusters is consistent with single-cell RNA sequencing data. The oscillatory states specify the irreversible state transitions along cell cycle progression. Furthermore, we identify possible mechanisms to understand the irreversible state transitions from the steady states. We expect this approach to be robust and generally applicable to unbiasedly predict dynamical transitions of a gene regulatory circuit

    Parallel implementation of the TRANSIMS micro-simulation

    Full text link
    This paper describes the parallel implementation of the TRANSIMS traffic micro-simulation. The parallelization method is domain decomposition, which means that each CPU of the parallel computer is responsible for a different geographical area of the simulated region. We describe how information between domains is exchanged, and how the transportation network graph is partitioned. An adaptive scheme is used to optimize load balancing. We then demonstrate how computing speeds of our parallel micro-simulations can be systematically predicted once the scenario and the computer architecture are known. This makes it possible, for example, to decide if a certain study is feasible with a certain computing budget, and how to invest that budget. The main ingredients of the prediction are knowledge about the parallel implementation of the micro-simulation, knowledge about the characteristics of the partitioning of the transportation network graph, and knowledge about the interaction of these quantities with the computer system. In particular, we investigate the differences between switched and non-switched topologies, and the effects of 10 Mbit, 100 Mbit, and Gbit Ethernet. keywords: Traffic simulation, parallel computing, transportation planning, TRANSIM
    • …
    corecore