22,314 research outputs found

    Divide and Conquer: A Deep CASA Approach to Talker-independent Monaural Speaker Separation

    Full text link
    We address talker-independent monaural speaker separation from the perspectives of deep learning and computational auditory scene analysis (CASA). Specifically, we decompose the multi-speaker separation task into the stages of simultaneous grouping and sequential grouping. Simultaneous grouping is first performed in each time frame by separating the spectra of different speakers with a permutation-invariantly trained neural network. In the second stage, the frame-level separated spectra are sequentially grouped to different speakers by a clustering network. The proposed deep CASA approach optimizes frame-level separation and speaker tracking in turn, and produces excellent results for both objectives. Experimental results on the benchmark WSJ0-2mix database show that the new approach achieves the state-of-the-art results with a modest model size.Comment: 10 pages, 5 figure

    An Empirical Evaluation of Deep Learning for ICD-9 Code Assignment using MIMIC-III Clinical Notes

    Full text link
    Background and Objective: Code assignment is of paramount importance in many levels in modern hospitals, from ensuring accurate billing process to creating a valid record of patient care history. However, the coding process is tedious and subjective, and it requires medical coders with extensive training. This study aims to evaluate the performance of deep-learning-based systems to automatically map clinical notes to ICD-9 medical codes. Methods: The evaluations of this research are focused on end-to-end learning methods without manually defined rules. Traditional machine learning algorithms, as well as state-of-the-art deep learning methods such as Recurrent Neural Networks and Convolution Neural Networks, were applied to the Medical Information Mart for Intensive Care (MIMIC-III) dataset. An extensive number of experiments was applied to different settings of the tested algorithm. Results: Findings showed that the deep learning-based methods outperformed other conventional machine learning methods. From our assessment, the best models could predict the top 10 ICD-9 codes with 0.6957 F1 and 0.8967 accuracy and could estimate the top 10 ICD-9 categories with 0.7233 F1 and 0.8588 accuracy. Our implementation also outperformed existing work under certain evaluation metrics. Conclusion: A set of standard metrics was utilized in assessing the performance of ICD-9 code assignment on MIMIC-III dataset. All the developed evaluation tools and resources are available online, which can be used as a baseline for further research

    Deep Hierarchical Reinforcement Learning Based Recommendations via Multi-goals Abstraction

    Full text link
    The recommender system is an important form of intelligent application, which assists users to alleviate from information redundancy. Among the metrics used to evaluate a recommender system, the metric of conversion has become more and more important. The majority of existing recommender systems perform poorly on the metric of conversion due to its extremely sparse feedback signal. To tackle this challenge, we propose a deep hierarchical reinforcement learning based recommendation framework, which consists of two components, i.e., high-level agent and low-level agent. The high-level agent catches long-term sparse conversion signals, and automatically sets abstract goals for low-level agent, while the low-level agent follows the abstract goals and interacts with real-time environment. To solve the inherent problem in hierarchical reinforcement learning, we propose a novel deep hierarchical reinforcement learning algorithm via multi-goals abstraction (HRL-MG). Our proposed algorithm contains three characteristics: 1) the high-level agent generates multiple goals to guide the low-level agent in different stages, which reduces the difficulty of approaching high-level goals; 2) different goals share the same state encoder parameters, which increases the update frequency of the high-level agent and thus accelerates the convergence of our proposed algorithm; 3) an appreciate benefit assignment function is designed to allocate rewards in each goal so as to coordinate different goals in a consistent direction. We evaluate our proposed algorithm based on a real-world e-commerce dataset and validate its effectiveness.Comment: submitted to SIGKDD 201

    JECL: Joint Embedding and Cluster Learning for Image-Text Pairs

    Full text link
    We propose JECL, a method for clustering image-caption pairs by training parallel encoders with regularized clustering and alignment objectives, simultaneously learning both representations and cluster assignments. These image-caption pairs arise frequently in high-value applications where structured training data is expensive to produce, but free-text descriptions are common. JECL trains by minimizing the Kullback-Leibler divergence between the distribution of the images and text to that of a combined joint target distribution and optimizing the Jensen-Shannon divergence between the soft cluster assignments of the images and text. Regularizers are also applied to JECL to prevent trivial solutions. Experiments show that JECL outperforms both single-view and multi-view methods on large benchmark image-caption datasets, and is remarkably robust to missing captions and varying data sizes

    Heated-Up Softmax Embedding

    Full text link
    Metric learning aims at learning a distance which is consistent with the semantic meaning of the samples. The problem is generally solved by learning an embedding for each sample such that the embeddings of samples of the same category are compact while the embeddings of samples of different categories are spread-out in the feature space. We study the features extracted from the second last layer of a deep neural network based classifier trained with the cross entropy loss on top of the softmax layer. We show that training classifiers with different temperature values of softmax function leads to features with different levels of compactness. Leveraging these insights, we propose a "heating-up" strategy to train a classifier with increasing temperatures, leading the corresponding embeddings to achieve state-of-the-art performance on a variety of metric learning benchmarks.Comment: 11 pages, 4 figure

    Convolutional Neural Networks for Fast Approximation of Graph Edit Distance

    Full text link
    Graph Edit Distance (GED) computation is a core operation of many widely-used graph applications, such as graph classification, graph matching, and graph similarity search. However, computing the exact GED between two graphs is NP-complete. Most current approximate algorithms are based on solving a combinatorial optimization problem, which involves complicated design and high time complexity. In this paper, we propose a novel end-to-end neural network based approach to GED approximation, aiming to alleviate the computational burden while preserving good performance. The proposed approach, named GSimCNN, turns GED computation into a learning problem. Each graph is considered as a set of nodes, represented by learnable embedding vectors. The GED computation is then considered as a two-set matching problem, where a higher matching score leads to a lower GED. A Convolutional Neural Network (CNN) based approach is proposed to tackle the set matching problem. We test our algorithm on three real graph datasets, and our model achieves significant performance enhancement against state-of-the-art approximate GED computation algorithms.Comment: arXiv admin note: text overlap with arXiv:1808.0568

    Learning K-way D-dimensional Discrete Code For Compact Embedding Representations

    Full text link
    Embedding methods such as word embedding have become pillars for many applications containing discrete structures. Conventional embedding methods directly associate each symbol with a continuous embedding vector, which is equivalent to applying linear transformation based on "one-hot" encoding of the discrete symbols. Despite its simplicity, such approach yields number of parameters that grows linearly with the vocabulary size and can lead to overfitting. In this work we propose a much more compact K-way D-dimensional discrete encoding scheme to replace the "one-hot" encoding. In "KD encoding", each symbol is represented by a DD-dimensional code, and each of its dimension has a cardinality of KK. The final symbol embedding vector can be generated by composing the code embedding vectors. To learn the semantically meaningful code, we derive a relaxed discrete optimization technique based on stochastic gradient descent. By adopting the new coding system, the efficiency of parameterization can be significantly improved (from linear to logarithmic), and this can also mitigate the over-fitting problem. In our experiments with language modeling, the number of embedding parameters can be reduced by 97\% while achieving similar or better performance.Comment: NIPS'17 DISCM

    Machine Learning Methods for Data Association in Multi-Object Tracking

    Full text link
    Data association is a key step within the multi-object tracking pipeline that is notoriously challenging due to its combinatorial nature. A popular and general way to formulate data association is as the NP-hard multidimensional assignment problem (MDAP). Over the last few years, data-driven approaches to assignment have become increasingly prevalent as these techniques have started to mature. We focus this survey solely on learning algorithms for the assignment step of multi-object tracking, and we attempt to unify various methods by highlighting their connections to linear assignment as well as to the MDAP. First, we review probabilistic and end-to-end optimization approaches to data association, followed by methods that learn association affinities from data. We then compare the performance of the methods presented in this survey, and conclude by discussing future research directions.Comment: Accepted for publication in ACM Computing Survey

    Affinity CNN: Learning Pixel-Centric Pairwise Relations for Figure/Ground Embedding

    Full text link
    Spectral embedding provides a framework for solving perceptual organization problems, including image segmentation and figure/ground organization. From an affinity matrix describing pairwise relationships between pixels, it clusters pixels into regions, and, using a complex-valued extension, orders pixels according to layer. We train a convolutional neural network (CNN) to directly predict the pairwise relationships that define this affinity matrix. Spectral embedding then resolves these predictions into a globally-consistent segmentation and figure/ground organization of the scene. Experiments demonstrate significant benefit to this direct coupling compared to prior works which use explicit intermediate stages, such as edge detection, on the pathway from image to affinities. Our results suggest spectral embedding as a powerful alternative to the conditional random field (CRF)-based globalization schemes typically coupled to deep neural networks.Comment: minor updates; extended version of CVPR 2016 conference pape

    Recognizing Multi-talker Speech with Permutation Invariant Training

    Full text link
    In this paper, we propose a novel technique for direct recognition of multiple speech streams given the single channel of mixed speech, without first separating them. Our technique is based on permutation invariant training (PIT) for automatic speech recognition (ASR). In PIT-ASR, we compute the average cross entropy (CE) over all frames in the whole utterance for each possible output-target assignment, pick the one with the minimum CE, and optimize for that assignment. PIT-ASR forces all the frames of the same speaker to be aligned with the same output layer. This strategy elegantly solves the label permutation problem and speaker tracing problem in one shot. Our experiments on artificially mixed AMI data showed that the proposed approach is very promising.Comment: 5 pages, 6 figures, InterSpeech201
    • …
    corecore