9,736 research outputs found

    Evaluation of Computational Grammar Formalisms for Indian Languages

    Get PDF
    Natural Language Parsing has been the most prominent research area since the genesis of Natural Language Processing. Probabilistic Parsers are being developed to make the process of parser development much easier, accurate and fast. In Indian context, identification of which Computational Grammar Formalism is to be used is still a question which needs to be answered. In this paper we focus on this problem and try to analyze different formalisms for Indian languages

    Packed rules for automatic transfer-rule induction

    Get PDF
    We present a method of encoding transfer rules in a highly efficient packed structure using contextualized constraints (Maxwell and Kaplan, 1991), an existing method of encoding adopted from LFG parsing (Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001). The packed representation allows us to encode O(2n) transfer rules in a single packed representation only requiring O(n) storage space. Besides reducing space requirements, the representation also has a high impact on the amount of time taken to load large numbers of transfer rules to memory with very little trade-off in time needed to unpack the rules. We include an experimental evaluation which shows a considerable reduction in space and time requirements for a large set of automatically induced transfer rules by storing the rules in the packed representation

    Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

    Get PDF
    Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution. Recently, several proposed debiasing methods are shown to be very effective in improving out-of-distribution performance. However, their improvements come at the expense of performance drop when models are evaluated on the in-distribution data, which contain examples with higher diversity. This seemingly inevitable trade-off may not tell us much about the changes in the reasoning and understanding capabilities of the resulting models on broader types of examples beyond the small subset represented in the out-of-distribution data. In this paper, we address this trade-off by introducing a novel debiasing method, called confidence regularization, which discourage models from exploiting biases while enabling them to receive enough incentive to learn from all the training examples. We evaluate our method on three NLU tasks and show that, in contrast to its predecessors, it improves the performance on out-of-distribution datasets (e.g., 7pp gain on HANS dataset) while maintaining the original in-distribution accuracy.Comment: to appear at ACL 202
    corecore