5 research outputs found

    Organization and evolution of information within eukaryotic genomes.

    Get PDF

    Asymptotic behaviour and optimal word size for exact and approximate word matches between random sequences

    Get PDF
    BACKGROUND: The number of k-words shared between two sequences is a simple and effcient alignment-free sequence comparison method. This statistic, D(2), has been used for the clustering of EST sequences. Sequence comparison based on D(2 )is extremely fast, its runtime is proportional to the size of the sequences under scrutiny, whereas alignment-based comparisons have a worst-case run time proportional to the square of the size. Recent studies have tackled the rigorous study of the statistical distribution of D(2), and asymptotic regimes have been derived. The distribution of approximate k-word matches has also been studied. RESULTS: We have computed the D(2 )optimal word size for various sequence lengths, and for both perfect and approximate word matches. Kolmogorov-Smirnov tests show D(2 )to have a compound Poisson distribution at the optimal word size for small sequence lengths (below 400 letters) and a normal distribution at the optimal word size for large sequence lengths (above 1600 letters). We find that the D(2 )statistic outperforms BLAST in the comparison of artificially evolved sequences, and performs similarly to other methods based on exact word matches. These results obtained with randomly generated sequences are also valid for sequences derived from human genomic DNA. CONCLUSION: We have characterized the distribution of the D(2 )statistic at optimal word sizes. We find that the best trade-off between computational efficiency and accuracy is obtained with exact word matches. Given that our numerical tests have not included sequence shuffling, transposition or splicing, the improvements over existing methods reported here underestimate that expected in real sequences. Because of the linear run time and of the known normal asymptotic behavior, D(2)-based methods are most appropriate for large genomic sequences

    A computational framework for transcriptome assembly and annotation in non-model organisms: the case of venturia inaequalis

    Get PDF
    Philosophiae Doctor - PhDIn this dissertation three computational approaches are presented that enable optimization of reference-free transcriptome reconstruction. The first addresses the selection of bona fide reconstructed transcribed fragments (transfrags) from de novo transcriptome assemblies and annotation with a multiple domain co-occurrence framework. We showed that selected transfrags are functionally relevant and represented over 94% of the information derived from annotation by transference. The second approach relates to quality score based RNA-seq sub-sampling and the description of a novel sequence similarity-derived metric for quality assessment of de novo transcriptome assemblies. A detail systematic analysis of the side effects induced by quality score based trimming and or filtering on artefact removal and transcriptome quality is describe. Aggressive trimming produced incomplete reconstructed and missing transfrags. This approach was applied in generating an optimal transcriptome assembly for a South African isolate of V. inaequalis. The third approach deals with the computational partitioning of transfrags assembled from RNA-Seq of mixed host and pathogen reads. We used this strategy to correct a publicly available transcriptome assembly for V. inaequalis (Indian isolate). We binned 50% of the latter to Apple transfrags and identified putative immunity transcript models. Comparative transcriptomic analysis between fungi transfrags from the Indian and South African isolates reveal effectors or transcripts that may be expressed in planta upon morphogenic differentiation. These studies have successfully identified V. inaequalis specific transfrags that can facilitate gene discovery. The unique access to an in-house draft genome assembly allowed us to provide preliminary description of genes that are implicated in pathogenesis. Gene prediction with bona fide transfrags produced 11,692 protein-coding genes. We identified two hydrophobin-like genes and six accessory genes of the melanin biosynthetic pathway that are implicated in the invasive action of the appressorium. The cazyome reveals an impressive repertoire of carbohydrate degrading enzymes and carbohydrate-binding modules amongst which are six polysaccharide lyases, and the largest number of carbohydrate esterases (twenty-eight) known in any fungus sequenced to dat
    corecore