206 research outputs found

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    Perspective Chapter: Downscaling of Satellite Soil Moisture Estimates

    Get PDF
    Soil moisture is a key parameter in the hydrological cycle and plays a critical role in global climate. The capacity to forecast drought and floods, manage water resources, and make field-scale decisions depends on accurate and thorough information on soil moisture. In addition to the instrument-based field observation approaches, dynamic mapping of soil moisture has been made possible by satellite remote sensing technologies. Estimates of soil moisture at a global and regional scale from optical and thermal remote sensing have been explored, and considerable advancements have been made. However, these global soil moisture products have coarse spatial resolutions and are typically unsuitable for field-level hydrological and agricultural applications. In this regard, this chapter presents a comprehensive review of the latest downscaling methods to improve the coarse-spatial and temporal resolution of soil moisture products. The main approaches discussed in the chapter include active passive fusion, optical/thermal based, topography based, and data assimilation methods. The physical background, current status, advantages and limitations associated with each downscaling approach has been thoroughly examined. Each of these optical/thermal, microwave-based methods for soil moisture estimation involves intricate derivation at different spatiotemporal scales, which can be combined using recent advances in machine learning

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research

    Development of high-precision snow mapping tools for Arctic environments

    Get PDF
    Le manteau neigeux varie grandement dans le temps et l’espace, il faut donc de nombreux points d’observation pour le décrire précisément et ponctuellement, ce qui permet de valider et d’améliorer la modélisation de la neige et les applications en télédétection. L’analyse traditionnelle par des coupes de neige dévoile des détails pointus sur l’état de la neige à un endroit et un moment précis, mais est une méthode chronophage à laquelle la distribution dans le temps et l’espace font défaut. À l’opposé sur la fourchette de la précision, on retrouve les solutions orbitales qui couvrent la surface de la Terre à intervalles réguliers, mais à plus faible résolution. Dans l’optique de recueillir efficacement des données spatiales sur la neige durant les campagnes de terrain, nous avons développé sur mesure un système d’aéronef télépiloté (RPAS) qui fournit des cartes d’épaisseur de neige pour quelques centaines de mètres carrés, selon la méthode Structure from motion (SfM). Notre RPAS peut voler dans des températures extrêmement froides, au contraire des autres systèmes sur le marché. Il atteint une résolution horizontale de 6 cm et un écart-type d’épaisseur de neige de 39 % sans végétation (48,5 % avec végétation). Comme la méthode SfM ne permet pas de distinguer les différentes couches de neige, j’ai développé un algorithme pour un radar à onde continue à modulation de fréquence (FM-CW) qui permet de distinguer les deux couches principales de neige que l’on retrouve régulièrement en Arctique : le givre de profondeur et la plaque à vent. Les distinguer est crucial puisque les caractéristiques différentes des couches de neige font varier la quantité d’eau disponible pour l’écosystème lors de la fonte. Selon les conditions sur place, le radar arrive à estimer l’épaisseur de neige selon un écart-type entre 13 et 39 %. vii Finalement, j’ai équipé le radar d’un système de géolocalisation à haute précision. Ainsi équipé, le radar a une marge d’erreur de géolocalisation d’en moyenne <5 cm. À partir de la mesure radar, on peut déduire la distance entre le haut et le bas du manteau neigeux. En plus de l’épaisseur de neige, on obtient également des points de données qui permettent d’interpoler un modèle d’élévation de la surface solide sous-jacente. J’ai utilisé la méthode de structure triangulaire (TIN) pour toutes les interpolations. Le système offre beaucoup de flexibilité puisqu’il peut être installé sur un RPAS ou une motoneige. Ces outils épaulent la modélisation du couvert neigeux en fournissant des données sur un secteur, plutôt que sur un seul point. Les données peuvent servir à entraîner et à valider les modèles. Ainsi améliorés, ils peuvent, par exemple, permettre de prédire la taille, le niveau de santé et les déplacements de populations d’ongulés, dont la survie dépend de la qualité de la neige. (Langlois et coll., 2017.) Au même titre que la validation de modèles de neige, les outils présentés permettent de comparer et de valider d’autres données de télédétection (par ex. satellites) et d’élargir notre champ de compréhension. Finalement, les cartes ainsi créées peuvent aider les écologistes à évaluer l’état d’un écosystème en leur donnant accès à une plus grande quantité d’information sur le manteau neigeux qu’avec les coupes de neige traditionnelles.Abstract: Snow is highly variable in time and space and thus many observation points are needed to describe the present state of the snowpack accurately. This description of the state of the snowpack is necessary to validate and improve snow modeling efforts and remote sensing applications. The traditional snowpit analysis delivers a highly detailed picture of the present state of the snow in a particular location but lacks the distribution in space and time as it is a time-consuming method. On the opposite end of the spatial scale are orbital solutions covering the surface of the Earth in regular intervals, but at the cost of a much lower resolution. To improve the ability to collect spatial snow data efficiently during a field campaign, we developed a custom-made, remotely piloted aircraft system (RPAS) to deliver snow depth maps over a few hundred square meters by using Structure-from-Motion (SfM). The RPAS is capable of flying in extremely low temperatures where no commercial solutions are available. The system achieves a horizontal resolution of 6 cm with snow depth RMSE of 39% without vegetation (48.5% with vegetation) As the SfM method does not distinguish between different snow layers, I developed an algorithm for a frequency modulated continuous wave (FMCW) radar that distinguishes between the two main snow layers that are found regularly in the Arctic: “Depth Hoar” and “Wind Slab”. The distinction is important as these characteristics allow to determine the amount of water stored in the snow that will be available for the ecosystem during the melt season. Depending on site conditions, the radar estimates the snow depth with an RMSE between 13% and 39%. v Finally, I equipped the radar with a high precision geolocation system. With this setup, the geolocation uncertainty of the radar on average < 5 cm. From the radar measurement, the distance to the top and the bottom of the snowpack can be extracted. In addition to snow depth, it also delivers data points to interpolate an elevation model of the underlying solid surface. I used the Triangular Irregular Network (TIN) method for any interpolation. The system can be mounted on RPAS and snowmobiles and thus delivers a lot of flexibility. These tools will assist snow modeling as they provide data from an area instead of a single point. The data can be used to force or validate the models. Improved models will help to predict the size, health, and movements of ungulate populations, as their survival depends on it (Langlois et al., 2017). Similar to the validation of snow models, the presented tools allow a comparison and validation of other remote sensing data (e.g. satellite) and improve the understanding limitations. Finally, the resulting maps can be used by ecologist to better asses the state of the ecosystem as they have a more complete picture of the snow cover on a larger scale that it could be achieved with traditional snowpits

    Using Remote Sensing Techniques to Improve Hydrological Predictions in a Rapidly Changing World

    Get PDF
    Remotely sensed geophysical datasets are being produced at increasingly fast rates to monitor various aspects of the Earth system in a rapidly changing world. The efficient and innovative use of these datasets to understand hydrological processes in various climatic and vegetation regimes under anthropogenic impacts has become an important challenge, but with a wide range of research opportunities. The ten contributions in this Special Issue have addressed the following four research topics: (1) Evapotranspiration estimation; (2) rainfall monitoring and prediction; (3) flood simulations and predictions; and (4) monitoring of ecohydrological processes using remote sensing techniques. Moreover, the authors have provided broader discussions on how to capitalize on state-of-the-art remote sensing techniques to improve hydrological model simulations and predictions, to enhance their skills in reproducing processes for the fast-changing world

    Managing Water Resources in Large River Basins

    Get PDF
    Management of water resources in large rivers basins typically differs in important ways from management in smaller basins. While in smaller basins the focus of water resources management may be on project implementation, irrigation and drainage management, water use efficiency and flood operations; in larger basins, because of the greater complexity and competing interests, there is often a greater need for long-term strategic river basin planning across sectors and jurisdictions, and considering social, environmental, and economic outcomes. This puts a focus on sustainable development, including consumptive water use and non-consumptive water uses, such as inland navigation and hydropower. It also requires the consideration of hard or technical issues—data, modeling, infrastructure—as well as soft issues of governance, including legal frameworks, policies, institutions, and political economy. Rapidly evolving technologies could play a significant role in managing large basins. This Special Issue of Water traverses these hard and soft aspects of managing water resources in large river basins through a series of diverse case studies from across the globe that demonstrate recent advances in both technical and governance innovations in river basin management

    Advanced methods for earth observation data synergy for geophysical parameter retrieval

    Get PDF
    The first part of the thesis focuses on the analysis of relevant factors to estimate the response time between satellite-based and in-situ soil moisture (SM) using a Dynamic Time Warping (DTW). DTW was applied to the SMOS L4 SM, and was compared to in-situ root-zone SM in the REMEDHUS network in Western Spain. The method was customized to control the evolution of time lag during wetting and drying conditions. Climate factors in combination with crop growing seasons were studied to reveal SM-related processes. The heterogeneity of land use was analyzed using high-resolution images of NDVI from Sentinel-2 to provide information about the level of spatial representativity of SMOS data to each in-situ station. The comparison of long-term precipitation records and potential evapotranspiration allowed estimation of SM seasons describing different SM conditions depending on climate and soil properties. The second part of the thesis focuses on data-driven methods for sea ice segmentation and parameter retrieval. A Bayesian framework is employed to segment sets of multi-source satellite data. The Bayesian unsupervised learning algorithm allows to investigate the ‘hidden link’ between multiple data. The statistical properties are accounted for by a Gaussian Mixture Model, and the spatial interactions are reflected using Hidden Markov Random Fields. The algorithm segments spatial data into a number of classes, which are represented as a latent field in physical space and as clusters in feature space. In a first application, a two-step probabilistic approach based on Expectation-Maximization and the Bayesian segmentation algorithm was used to segment SAR images to discriminate surface water from sea ice types. Information on surface roughness is contained in the radar backscattering images which can be - in principle - used to detect melt ponds and to estimate high-resolution sea ice concentration (SIC). In a second study, the algorithm was applied to multi-incidence angle TB data from the SMOS L1C product to harness the its sensitivity to thin ice. The spatial patterns clearly discriminate well-determined areas of open water, old sea ice and a transition zone, which is sensitive to thin sea ice thickness (SIT) and SIC. In a third application, SMOS and the AMSR2 data are used to examine the joint effect of CIMR-like observations. The information contained in the low-frequency channels allows to reveal ranges of thin sea ice, and thicker ice can be determined from the relationship between the high-frequency channels and changing conditions as the sea ice ages. The proposed approach is suitable for merging large data sets and provides metrics for class analysis, and to make informed choices about integrating data from future missions into sea ice products. A regression neural network approach was investigated with the goal to infer SIT using TB data from the Flexible Microwave Payload 2 (FMPL-2) of the FSSCat mission. Two models - covering thin ice up to 0.6m and the full-range of SIT - were trained on Arctic data using ground truth data derived from the SMOS and Cryosat-2. This work demonstrates that moderate-cost CubeSat missions can provide valuable data for applications in Earth observation.La primera parte de la tesis se centra en el análisis de los factores relevantes para estimar el tiempo de respuesta entre la humedad del suelo (SM) basada en el satélite y la in-situ, utilizando una deformación temporal dinámica (DTW). El DTW se aplicó al SMOS L4 SM, y se comparó con la SM in-situ en la red REMEDHUS en el oeste de España. El método se adaptó para controlar la evolución del desfase temporal durante diferentes condiciones de humedad y secado. Se estudiaron los factores climáticos en combinación con los períodos de crecimiento de los cultivos para revelar los procesos relacionados con la SM. La heterogeneidad del uso del suelo se analizó utilizando imágenes de alta resolución de NDVI de Sentinel-2 para proporcionar información sobre el nivel de representatividad espacial de los datos de SMOS a cada estación in situ. La comparación de los patrones de precipitación a largo plazo y la evapotranspiración potencial permitió estimar las estaciones de SM que describen diferentes condiciones de SM en función del clima y las propiedades del suelo. La segunda parte de esta tesis se centra en métodos dirigidos por datos para la segmentación del hielo marino y la obtención de parámetros. Se emplea un método de inferencia bayesiano para segmentar conjuntos de datos satelitales de múltiples fuentes. El algoritmo de aprendizaje bayesiano no supervisado permite investigar el “vínculo oculto” entre múltiples datos. Las propiedades estadísticas se contabilizan mediante un modelo de mezcla gaussiana, y las interacciones espaciales se reflejan mediante campos aleatorios ocultos de Markov. El algoritmo segmenta los datos espaciales en una serie de clases, que se representan como un campo latente en el espacio físico y como clústeres en el espacio de las variables. En una primera aplicación, se utilizó un enfoque probabilístico de dos pasos basado en la maximización de expectativas y el algoritmo de segmentación bayesiano para segmentar imágenes SAR con el objetivo de discriminar el agua superficial de los tipos de hielo marino. La información sobre la rugosidad de la superficie está contenida en las imágenes de backscattering del radar, que puede utilizarse -en principio- para detectar estanques de deshielo y estimar la concentración de hielo marino (SIC) de alta resolución. En un segundo estudio, el algoritmo se aplicó a los datos TB de múltiples ángulos de incidencia del producto SMOS L1C para aprovechar su sensibilidad al hielo fino. Los patrones espaciales discriminan claramente áreas bien determinadas de aguas abiertas, hielo marino viejo y una zona de transición, que es sensible al espesor del hielo marino fino (SIT) y al SIC. En una tercera aplicación, se utilizan los datos de SMOS y de AMSR2 para examinar el efecto conjunto de las observaciones tipo CIMR. La información contenida en los canales de baja frecuencia permite revelar rangos de hielo marino delgado, y el hielo más grueso puede determinarse a partir de la relación entre los canales de alta frecuencia y las condiciones cambiantes a medida que el hielo marino envejece. El enfoque propuesto es adecuado para fusionar grandes conjuntos de datos y proporciona métricas para el análisis de clases, y para tomar decisiones informadas sobre la integración de datos de futuras misiones en los productos de hielo marino. Se investigó un enfoque de red neuronal de regresión con el objetivo de inferir el SIT utilizando datos de TB de la carga útil de microondas flexible 2 (FMPL-2) de la misión FSSCat. Se entrenaron dos modelos - que cubren el hielo fino hasta 0.6 m y el rango completo del SIT - con datos del Ártico utilizando datos de “ground truth” derivados del SMOS y del Cryosat-2. Este trabajo demuestra que las misiones CubeSat de coste moderado pueden proporcionar datos valiosos para aplicaciones de observación de la Tierra.Postprint (published version

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version

    Space Systems: Emerging Technologies and Operations

    Get PDF
    SPACE SYSTEMS: EMERGING TECHNOLOGIES AND OPERATIONS is our seventh textbook in a series covering the world of UASs / CUAS/ UUVs. Other textbooks in our series are Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA\u27s Advanced Air Assets, 1st edition. Our previous six titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols et al., 2021) (Nichols R. K. et al., 2020) (Nichols R. et al., 2020) (Nichols R. et al., 2019) (Nichols R. K., 2018) Our seventh title takes on a new purview of Space. Let\u27s think of Space as divided into four regions. These are Planets, solar systems, the great dark void (which fall into the purview of astronomers and astrophysics), and the Dreamer Region. The earth, from a measurement standpoint, is the baseline of Space. It is the purview of geographers, engineers, scientists, politicians, and romantics. Flying high above the earth are Satellites. Military and commercial organizations govern their purview. The lowest altitude at which air resistance is low enough to permit a single complete, unpowered orbit is approximately 80 miles (125 km) above the earth\u27s surface. Normal Low Earth Orbit (LEO) satellite launches range between 99 miles (160 km) to 155 miles (250 km). Satellites in higher orbits experience less drag and can remain in Space longer in service. Geosynchronous orbit is around 22,000 miles (35,000 km). However, orbits can be even higher. UASs (Drones) have a maximum altitude of about 33,000 ft (10 km) because rotating rotors become physically limiting. (Nichols R. et al., 2019) Recreational drones fly at or below 400 ft in controlled airspace (Class B, C, D, E) and are permitted with prior authorization by using a LAANC or DroneZone. Recreational drones are permitted to fly at or below 400 ft in Class G (uncontrolled) airspace. (FAA, 2022) However, between 400 ft and 33,000 ft is in the purview of DREAMERS. In the DREAMERS region, Space has its most interesting technological emergence. We see emerging technologies and operations that may have profound effects on humanity. This is the mission our book addresses. We look at the Dreamer Region from three perspectives:1) a Military view where intelligence, jamming, spoofing, advanced materials, and hypersonics are in play; 2) the Operational Dreamer Region; whichincludes Space-based platform vulnerabilities, trash, disaster recovery management, A.I., manufacturing, and extended reality; and 3) the Humanitarian Use of Space technologies; which includes precision agriculture wildlife tracking, fire risk zone identification, and improving the global food supply and cattle management. Here’s our book’s breakdown: SECTION 1 C4ISR and Emerging Space Technologies. C4ISR stands for Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance. Four chapters address the military: Current State of Space Operations; Satellite Killers and Hypersonic Drones; Space Electronic Warfare, Jamming, Spoofing, and ECD; and the challenges of Manufacturing in Space. SECTION 2: Space Challenges and Operations covers in five chapters a wide purview of challenges that result from operations in Space, such as Exploration of Key Infrastructure Vulnerabilities from Space-Based Platforms; Trash Collection and Tracking in Space; Leveraging Space for Disaster Risk Reduction and Management; Bio-threats to Agriculture and Solutions From Space; and rounding out the lineup is a chapter on Modelling, Simulation, and Extended Reality. SECTION 3: Humanitarian Use of Space Technologies is our DREAMERS section. It introduces effective use of Drones and Precision Agriculture; and Civilian Use of Space for Environmental, Wildlife Tracking, and Fire Risk Zone Identification. SECTION 3 is our Hope for Humanity and Positive Global Change. Just think if the technologies we discuss, when put into responsible hands, could increase food production by 1-2%. How many more millions of families could have food on their tables? State-of-the-Art research by a team of fifteen SMEs is incorporated into our book. We trust you will enjoy reading it as much as we have in its writing. There is hope for the future.https://newprairiepress.org/ebooks/1047/thumbnail.jp
    corecore