42 research outputs found

    Sonic interactions in virtual environments

    Get PDF
    This book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Switched Spatial Impulse Response Convolution as an Ambisonic Distance-Panning Function

    Get PDF
    Ambisonics offers a robust and effective approach to the recording, processing and delivery of Spatial Audio. The Ambisonic system is often considered to provide a perceptually and computationally advantageous Spatial Audio experience in comparison to typical Binaural systems. This is true even when an end-step Binaural render is required, as is typical in Virtual or Augmented Reality systems which naturally imply audio delivery via headphones. Standard Ambisonic processing allows for the rotation of a sound field around an origin position. There is not, however, a strongly established means of modulating the radial distance of a virtual sound source from the origin. This paper presents a potential solution to an Ambisonic distance-panning function for both static and dynamic virtual sources in the form of a FOA (First Order Ambisonics) Switched-SIR (Spatial Impulse Response) Convolution Reverberator. This includes a presentation of the framework for such a function, and an analysis of audio rendered using prototype scripts

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Experiential Perspectives on Sound and Music for Virtual Reality Technologies

    Get PDF
    This thesis examines the intersection of sound, music, and virtuality within current and next-generation virtual reality technologies, with a specific focus on exploring the experiential perspectives of users and participants within virtual experiences. The first half of the thesis constructs a new theoretical model for examining intersections of sound and virtual experience. In Chapter 1, a new framework for virtual experience is constructed consisting of three key elements: virtual hardware (e.g., displays, speakers); virtual software (e.g., rules and systems of interaction); and virtual externalities (i.e., physical spaces used for engaging in virtual experiences). Through using and applying this new model, methodical examinations of complex virtual experiences are possible. Chapter 2 examines the second axis of the thesis through constructing an understanding of how sound is designed, implemented, and received within virtual reality. The concept of soundscapes is explored in the context of experiential perspectives, serving as a useful approach for describing received auditory phenomena. Auditory environments are proposed as a new model for exploring how auditory phenomena can be broadcast to audiences. Chapter 3 explores how inauthenticity within sound can impact users in virtual experience and uses authenticity to critically examine challenges surrounding sound in virtual reality. Constructions of authenticity in music performance are used to illustrate how authenticity is constructed within virtual experience. Chapter 4 integrates music into the understanding of auditory phenomena constructed throughout the thesis: music is rarely part of the created world in a virtual experience. Rather, it is typically something which only the audience – as external observers of the created world – can hear. Therefore, music within immersive virtual reality may be challenging as the audience is placed within the created world.The second half of this thesis uses this theoretical model to consider contemporary and future approaches to virtual experiences. Chapter 5 constructs a series of case studies to demonstrate the use of the framework as a trans-medial and intra/inter-contextual tool of analysis. Through use of the framework, varying approaches to implementation of sound and music in virtual reality technologies are considered, which reveals trans-medial commonalities of immersion and engagement with virtual experiences through sound. Chapter 6 examines near-future technologies, including brain-computer interfaces and other full-immersion technologies, to identify key issues in the design and implementation of future virtual experiences and suggest how interdisciplinary collaboration may help to develop solutions to these issues. Chapter 7 considers how the proposed model for virtuality might allow for methodical examination of similar issues within other fields, such as acoustics and architecture, and examines the ethical considerations that may become relevant as virtual technology develops within the 21st Century.This research explores and rationalises theoretical models of virtuality and sound. This permits designers and developers to improve the implementation of sound and music in virtual experiences for the purpose of improving user outcomes.<br/

    Binaural virtual auditory display for music discovery and recommendation

    Get PDF
    Emerging patterns in audio consumption present renewed opportunity for searching or navigating music via spatial audio interfaces. This thesis examines the potential benefits and considerations for using binaural audio as the sole or principal output interface in a music browsing system. Three areas of enquiry are addressed. Specific advantages and constraints in spatial display of music tracks are explored in preliminary work. A voice-led binaural music discovery prototype is shown to offer a contrasting interactive experience compared to a mono smartspeaker. Results suggest that touch or gestural interaction may be more conducive input modes in the former case. The limit of three binaurally spatialised streams is identified from separate data as a usability threshold for simultaneous presentation of tracks, with no evident advantages derived from visual prompts to aid source discrimination or localisation. The challenge of implementing personalised binaural rendering for end-users of a mobile system is addressed in detail. A custom framework for assessing head-related transfer function (HRTF) selection is applied to data from an approach using 2D rendering on a personal computer. That HRTF selection method is developed to encompass 3D rendering on a mobile device. Evaluation against the same criteria shows encouraging results in reliability, validity, usability and efficiency. Computational analysis of a novel approach for low-cost, real-time, head-tracked binaural rendering demonstrates measurable advantages compared to first order virtual Ambisonics. Further perceptual evaluation establishes working parameters for interactive auditory display use cases. In summation, the renderer and identified tolerances are deployed with a method for synthesised, parametric 3D reverberation (developed through related research) in a final prototype for mobile immersive playlist editing. Task-oriented comparison with a graphical interface reveals high levels of usability and engagement, plus some evidence of enhanced flow state when using the eyes-free binaural system

    A Framework for Site-Specific Spatial Audio Applications

    Get PDF
    As audio recording and reproduction technology has advanced over the past five decades, increasing attention has been paid to recreating the highly spatialised listening experience we understand from our physical environment. This is the logical next step in the quest for increasing audio clarity, particularly as virtual reality gaming and augmented reality experiences become more widespread. This study sought to develop and demonstrate a technical framework for the production of site-specific audio-based works that is user-friendly and cost effective. The system was intended to be used by existing content producers and audio programmers to work collaboratively with a range of site-based organisations such as museums and galleries to produce an audio augmentation of the physicality of the space. This research was guided by four key aims: 1. Demonstrate a compositional method for immersive spatial audio that references the novel physical environment and the listener’s movement within it. 2. Describe a framework for the development and deployment of a spatial audio visitor technology system. 3. Prototype a naturalistic method for the delivery and navigation of contextual information via audio. 4. Deploy, demonstrate, and evaluate a spatial audio experience within a representative environment. The resulting system makes use of a range of existing technologies to provide a development experience and output that meets a clearly defined set of criteria. Furthermore, a case study application has been developed that demonstrates the use of the system to augment a selection of six paintings in a gallery space. For each of these paintings, a creative spatial composition was produced that demonstrates the principles of spatial composition discussed in this thesis. A spoken informational layer sits on top of this acting as a museum audio guide, featuring navigation using head gestures for a hands-free experience. This thesis presents a detailed discussion of the artistic intentions and techniques employed in the production of the six soundscapes, as well as an evaluation of the resulting application in use in a public gallery space
    corecore