1,248 research outputs found

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Distributed Detection and Fusion in Parallel Sensor Architectures

    Get PDF
    Parallel distributed detection system consists of several separate sensor-detector nodes (separated spatially or by their principles of operation), each with some processing capabilities. These local sensor-detectors send some information on an observed phenomenon to a centrally located Data Fusion Center for aggregation and decision making. Often, the local sensors use electro-mechanical, optical or RF modalities and are known as ``hard'' sensors. For such data sources, the sensor observations have structure and often some tractable statistical distributions which help in weighing their contribution to an integrated global decision. In a distributed detection environment, we often also have ``humans in the loop.''. Humans provide their subjective opinions on these phenomena. These opinions are labeled ``soft'' data. It is of interest to integrate "soft'' decisions, mostly assessments provided by humans, with data from the "hard" sensors, in order to improve global decision reliability. Several techniques were developed to combine data from traditional hard sensors, and a body of work was also created about integration of "soft'' data. However relatively little work was done on combining hard and soft data and decisions in an integrated environment. Our work investigates both "hard'' and "hard/soft'' fusion schemes, and proposes data integration architectures to facilitate heterogeneous sensor data fusion. In the context of "hard'' fusion, one of the contributions of this thesis is an algorithm that provides a globally optimum solution for local detector (hard sensor) design that satisfies a Neyman-Pearson criterion (maximal probability of detection under a fixed upper bound on the global false alarm rate) at the fusion center. Furthermore, the thesis also delves into application of distributed detection techniques in both parallel and sequential frameworks. Specifically, we apply parallel detection and fusion schemes to the problem of real time computer user authentication and sequential Kalman filtering for real time hypoxia detection. In the context of "hard/soft'' fusion, we propose a new Dempster-Shafer evidence theory based approach to facilitate heterogeneous sensor data fusion. Application of the framework to a number of simulated example scenarios showcases the wide range of applicability of the developed approach. We also propose and develop a hierarchical evidence tree based architecture for representing nested human opinions. The proposed framework is versatile enough to deal with both hard and soft source data using the evidence theory framework, it can handle uncertainty as well as data aggregation.Ph.D., Electrical Engineering -- Drexel University, 201

    Dynamic adversarial mining - effectively applying machine learning in adversarial non-stationary environments.

    Get PDF
    While understanding of machine learning and data mining is still in its budding stages, the engineering applications of the same has found immense acceptance and success. Cybersecurity applications such as intrusion detection systems, spam filtering, and CAPTCHA authentication, have all begun adopting machine learning as a viable technique to deal with large scale adversarial activity. However, the naive usage of machine learning in an adversarial setting is prone to reverse engineering and evasion attacks, as most of these techniques were designed primarily for a static setting. The security domain is a dynamic landscape, with an ongoing never ending arms race between the system designer and the attackers. Any solution designed for such a domain needs to take into account an active adversary and needs to evolve over time, in the face of emerging threats. We term this as the ‘Dynamic Adversarial Mining’ problem, and the presented work provides the foundation for this new interdisciplinary area of research, at the crossroads of Machine Learning, Cybersecurity, and Streaming Data Mining. We start with a white hat analysis of the vulnerabilities of classification systems to exploratory attack. The proposed ‘Seed-Explore-Exploit’ framework provides characterization and modeling of attacks, ranging from simple random evasion attacks to sophisticated reverse engineering. It is observed that, even systems having prediction accuracy close to 100%, can be easily evaded with more than 90% precision. This evasion can be performed without any information about the underlying classifier, training dataset, or the domain of application. Attacks on machine learning systems cause the data to exhibit non stationarity (i.e., the training and the testing data have different distributions). It is necessary to detect these changes in distribution, called concept drift, as they could cause the prediction performance of the model to degrade over time. However, the detection cannot overly rely on labeled data to compute performance explicitly and monitor a drop, as labeling is expensive and time consuming, and at times may not be a possibility altogether. As such, we propose the ‘Margin Density Drift Detection (MD3)’ algorithm, which can reliably detect concept drift from unlabeled data only. MD3 provides high detection accuracy with a low false alarm rate, making it suitable for cybersecurity applications; where excessive false alarms are expensive and can lead to loss of trust in the warning system. Additionally, MD3 is designed as a classifier independent and streaming algorithm for usage in a variety of continuous never-ending learning systems. We then propose a ‘Dynamic Adversarial Mining’ based learning framework, for learning in non-stationary and adversarial environments, which provides ‘security by design’. The proposed ‘Predict-Detect’ classifier framework, aims to provide: robustness against attacks, ease of attack detection using unlabeled data, and swift recovery from attacks. Ideas of feature hiding and obfuscation of feature importance are proposed as strategies to enhance the learning framework\u27s security. Metrics for evaluating the dynamic security of a system and recover-ability after an attack are introduced to provide a practical way of measuring efficacy of dynamic security strategies. The framework is developed as a streaming data methodology, capable of continually functioning with limited supervision and effectively responding to adversarial dynamics. The developed ideas, methodology, algorithms, and experimental analysis, aim to provide a foundation for future work in the area of ‘Dynamic Adversarial Mining’, wherein a holistic approach to machine learning based security is motivated

    Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review

    Get PDF
    Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative

    Context Exploitation in Data Fusion

    Get PDF
    Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this reason, modern solutions are trying to utilize any available information which could help to constrain, improve or explain the measurements. So called Context Information (CI) is understood as information that surrounds an element of interest, whose knowledge may help understanding the (estimated) situation and also in reacting to that situation. However, context discovery and exploitation are still largely unexplored research topics. Until now, the context has been extensively exploited as a parameter in system and measurement models which led to the development of numerous approaches for the linear or non-linear constrained estimation and target tracking. More specifically, the spatial or static context is the most common source of the ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the prediction or the measurement update of the filters. In the case of multiple model estimators, context can not only be related to the state but also to a certain mode of the filter. Common practice for multiple model scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on context. We believe that interactions between the environment and the object could be classified into actions, activities and intents, and formed into structured graphs with contextual links translated into arcs. By learning the environment model we will be able to make prediction on the target\u2019s future actions based on its past observation. Probability of target future action could be utilized in the fusion process to adjust tracker confidence on measurements. By incorporating contextual knowledge of the environment, in the form of a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties of the tracking solution and improve the consistency of the track. The promising results demonstrate that the fusion of CI brings a significant performance improvement in comparison to the regular tracking approaches

    Evaluation of a fuzzy-expert system for fault diagnosis in power systems

    Get PDF
    A major problem with alarm processing and fault diagnosis in power systems is the reliance on the circuit alarm status. If there is too much information available and the time of arrival of the information is random due to weather conditions etc., the alarm activity is not easily interpreted by system operators. In respect of these problems, this thesis sets out the work that has been carried out to design and evaluate a diagnostic tool which assists power system operators during a heavy period of alarm activity in condition monitoring. The aim of employing this diagnostic tool is to monitor and raise uncertain alarm information for the system operators, which serves a proposed solution for restoring such faults. The diagnostic system uses elements of AI namely expert systems, and fuzzy logic that incorporate abductive reasoning. The objective of employing abductive reasoning is to optimise an interpretation of Supervisory Control and Data Acquisition (SCADA) based uncertain messages when the SCADA based messages are not satisfied with simple logic alone. The method consists of object-oriented programming, which demonstrates reusability, polymorphism, and readability. The principle behind employing objectoriented techniques is to provide better insights and solutions compared to conventional artificial intelligence (Al) programming languages. The characteristics of this work involve the development and evaluation of a fuzzy-expert system which tries to optimise the uncertainty in the 16-lines 12-bus sample power system. The performance of employing this diagnostic tool is assessed based on consistent data acquisition, readability, adaptability, and maintainability on a PC. This diagnostic tool enables operators to control and present more appropriate interpretations effectively rather than a mathematical based precise fault identification when the mathematical modelling fails and the period of alarm activity is high. This research contributes to the field of power system control, in particular Scottish Hydro-Electric PLC has shown interest and supplied all the necessary information and data. The AI based power system is presented as a sample application of Scottish Hydro-Electric and KEPCO (Korea Electric Power Corporation)

    Developing an advanced collision risk model for autonomous vehicles

    Get PDF
    Aiming at improving road safety, car manufacturers and researchers are verging upon autonomous vehicles. In recent years, collision prediction methods of autonomous vehicles have begun incorporating contextual information such as information about the traffic environment and the relative motion of other traffic participants but still fail to anticipate traffic scenarios of high complexity. During the past two decades, the problem of real-time collision prediction has also been investigated by traffic engineers. In the traffic engineering approach, a collision occurrence can potentially be predicted in real-time based on available data on traffic dynamics such as the average speed and flow of vehicles on a road segment. This thesis attempts to integrate vehicle-level collision prediction approaches for autonomous vehicles with network-level collision prediction, as studied by traffic engineers. [Continues.

    End-to-end anomaly detection in stream data

    Get PDF
    Nowadays, huge volumes of data are generated with increasing velocity through various systems, applications, and activities. This increases the demand for stream and time series analysis to react to changing conditions in real-time for enhanced efficiency and quality of service delivery as well as upgraded safety and security in private and public sectors. Despite its very rich history, time series anomaly detection is still one of the vital topics in machine learning research and is receiving increasing attention. Identifying hidden patterns and selecting an appropriate model that fits the observed data well and also carries over to unobserved data is not a trivial task. Due to the increasing diversity of data sources and associated stochastic processes, this pivotal data analysis topic is loaded with various challenges like complex latent patterns, concept drift, and overfitting that may mislead the model and cause a high false alarm rate. Handling these challenges leads the advanced anomaly detection methods to develop sophisticated decision logic, which turns them into mysterious and inexplicable black-boxes. Contrary to this trend, end-users expect transparency and verifiability to trust a model and the outcomes it produces. Also, pointing the users to the most anomalous/malicious areas of time series and causal features could save them time, energy, and money. For the mentioned reasons, this thesis is addressing the crucial challenges in an end-to-end pipeline of stream-based anomaly detection through the three essential phases of behavior prediction, inference, and interpretation. The first step is focused on devising a time series model that leads to high average accuracy as well as small error deviation. On this basis, we propose higher-quality anomaly detection and scoring techniques that utilize the related contexts to reclassify the observations and post-pruning the unjustified events. Last but not least, we make the predictive process transparent and verifiable by providing meaningful reasoning behind its generated results based on the understandable concepts by a human. The provided insight can pinpoint the anomalous regions of time series and explain why the current status of a system has been flagged as anomalous. Stream-based anomaly detection research is a principal area of innovation to support our economy, security, and even the safety and health of societies worldwide. We believe our proposed analysis techniques can contribute to building a situational awareness platform and open new perspectives in a variety of domains like cybersecurity, and health
    • …
    corecore