2,110 research outputs found

    Physics-based passivity-preserving parameterized model order reduction for PEEC circuit analysis

    Get PDF
    The decrease of integrated circuit feature size and the increase of operating frequencies require 3-D electromagnetic methods, such as the partial element equivalent circuit (PEEC) method, for the analysis and design of high-speed circuits. Very large systems of equations are often produced by 3-D electromagnetic methods, and model order reduction (MOR) methods have proven to be very effective in combating such high complexity. During the circuit synthesis of large-scale digital or analog applications, it is important to predict the response of the circuit under study as a function of design parameters such as geometrical and substrate features. Traditional MOR techniques perform order reduction only with respect to frequency, and therefore the computation of a new electromagnetic model and the corresponding reduced model are needed each time a design parameter is modified, reducing the CPU efficiency. Parameterized model order reduction (PMOR) methods become necessary to reduce large systems of equations with respect to frequency and other design parameters of the circuit, such as geometrical layout or substrate characteristics. We propose a novel PMOR technique applicable to PEEC analysis which is based on a parameterization process of matrices generated by the PEEC method and the projection subspace generated by a passivity-preserving MOR method. The proposed PMOR technique guarantees overall stability and passivity of parameterized reduced order models over a user-defined range of design parameter values. Pertinent numerical examples validate the proposed PMOR approach

    On-line health monitoring of passive electronic components using digitally controlled power converter

    Get PDF
    This thesis presents System Identification based On-Line Health Monitoring to analyse the dynamic behaviour of the Switch-Mode Power Converter (SMPC), detect, and diagnose anomalies in passive electronic components. The anomaly detection in this research is determined by examining the change in passive component values due to degradation. Degradation, which is a long-term process, however, is characterised by inserting different component values in the power converter. The novel health-monitoring capability enables accurate detection of passive electronic components despite component variations and uncertainties and is valid for different topologies of the switch-mode power converter. The need for a novel on-line health-monitoring capability is driven by the need to improve unscheduled in-service, logistics, and engineering costs, including the requirement of Integrated Vehicle Health Management (IVHM) for electronic systems and components. The detection and diagnosis of degradations and failures within power converters is of great importance for aircraft electronic manufacturers, such as Thales, where component failures result in equipment downtime and large maintenance costs. The fact that existing techniques, including built-in-self test, use of dedicated sensors, physics-of-failure, and data-driven based health-monitoring, have yet to deliver extensive application in IVHM, provides the motivation for this research ... [cont.]

    Método de estimación de las pérdidas de los conductores y del núcleo de componentes inductivos asimétricos mediante la técnica de análisis por método de elementos finitos en 3D

    Get PDF
    Tesis doctoral con la Mención de "Doctor Internacional"Dentro del campo de la ingeniería eléctrica, los convertidores electrónicos de potencia, que permiten generar una tensión y corriente de unas determinadas características a partir de una fuente de energía, juegan un papel crítico en las energías renovables, vehículos eléctricos o la ingeniería aeroespacial. Los componentes magnéticos constituyen uno de los elementos esenciales en los convertidores de potencia determinando el filtrado de corriente, la operación y la eficiencia del convertidor. Uno de los parámetros más críticos que influyen en la eficiencia de los convertidores son las pérdidas de los componentes magnéticos que dependen de determinados efectos electromagnéticos como el efecto pelicular, de proximidad, de entre-hierros y de borde. Estos efectos son aún más relevantes en rangos de alta frecuencia, a la que suelen operar habitualmente los convertidores electrónicos de potencia. La optimización del convertidor de potencia requiere un análisis detallado de los componentes magnéticos y de los efectos de frecuencia producidos en función de cada aplicación particular, y sus requisitos específicos, principalmente en los rangos de media y alta frecuencia. La trasmisión, almacenamiento y pérdidas de energía eléctrica y magnética son relevantes en este contexto y están determinadas por las ecuaciones de Maxwell, cuya resolución es compleja. Existen tres importantes enfoques para la resolución de estas ecuaciones: métodos analíticos, análisis utilizando herramienta de elementos finitos y por realización de ensayos. El primero de ellos consiste en la resolución analítica de las ecuaciones, con las necesarias simplificaciones, siendo la más habitual el asumir simetrías en las distribuciones de los campos magnéticos para poder resolver las ecuaciones de Maxwell en una o dos dimensiones. Como desventaja, dicha simplificación no permite determinar la distribución del campo magnético dentro de los conductores. El segundo enfoque utiliza un método de elementos finitos, resolviendo las ecuaciones de Maxwell en cada elemento finito, no siendo posible simular algunos componentes magnéticos complejos por precisar un tiempo de simulación sea muy elevado, haciendo que esta solución no resulte práctica para los ingenieros de desarrollo. El tercer enfoque, basado en la realización de ensayos de laboratorio, permite obtener los parámetros eléctrico de cualquier componente magnético. No obstante, el tiempo necesario es también alto y sólo es usado para los ajustes finales. La mayoría de los ingenieros electrónicos y científicos usan los análisis basados en elementos finitos de los componentes magnéticos realizando las posibles simplificaciones teniendo en cuenta la distribución de campo magnético y la simétrica del componente. Cuando el componente magnético no presenta ninguna simetría, deben utilizarse modelos 3D para la determinación de sus parámetros del circuito eléctrico equivalente y la optimización magnética del componente, así como un detallado estudio de los efectos pelicular y de proximidad, que son especialmente relevantes cuando el componente trabaja en alta frecuencia. En este trabajo, se proponer una metodología basada en elementos finitos en 3D con un bajo tiempo de simulación que permite obtener los parámetros que del modelo eléctrico equivalente para componentes magnéticos asimétricos a partir de la estimación de las pérdidas del bobinado y del núcleo.In electrical engineering, power converters, as devices that are able to transform a defined current and voltage from an energy source, have a critical role in different fields as renewable energy, electric vehicles or aerospace engineering. The magnetic components are relevant elements in power converters because determines the current filtering and conversion functions and converter efficiency and performance. One of the critical parameters that influence in the efficiency of converters are the losses in the magnetic components that depends on particular effects as they are the skin, proximity, airgap and edge effects. These effects are more relevant in the high frequency ranges where the power converters are usually operated. The optimization of the power converter requires of the detailed analysis of the magnetic component and the involved frequency effects according to the application when particular requirements are needed, mostly in the medium and high frequency. Transmission, storage and losses of magnetic and electric energy analysis is relevant in this context and are determined by the Maxwell´s equations whose resolution is a complex task. There are three main methods to solve this equation system: analytical method, finite element method analysis and experimental methodology. The first method consists on the analytical resolution of the equations with the necessary simplifications, being the most common approach the assumption of the magnetic field distribution in one or two dimensions to solve the equations system, however this simplification does not allow determining the magnetic field into the conductors. The second approach uses the Finite Element Method, solving the Maxwell equations in very finite element of the component, but is not possible to simulate some complex magnetic components because it requires a high computational time, being not useful for power electronics designers. The third method, based on experimental lab tests, allows to obtain the electrical parameters for any magnetic component. Nevertheless, the time cost is also huge and it is only used for adjustments in the final stage. Most of the power electronics designers and scientists use the analysis of the magnetic components based on Finite Element Method doing the available simplification taking into account the magnetic field distribution and the symmetry of the magnetic component. If the magnetic component has not any symmetric, a 3D model is necessary to determine the electromagnetic or thermal parameters for the electrical equivalent circuit and the magnetic component optimization, as well as a detailed study for skin effect and proximity effect, even more if the magnetic components work at high frequency. In this work, it is proposed a new method based in 3D Finite Element Analysis with a low computational time that allows obtaining the electrical equivalent model parameters for asymmetric magnetic components from the estimation of winding and core power losses

    Demonstration of High Power Density kW Converters utilizing Wide-Band Gap Devices

    Get PDF

    Artificial Neural Network and Wavelet Features Extraction Applications in Nitrate and Sulphate Water Contamination Estimation

    Get PDF
    This work expounds the review of non-destructive evaluation using near-field sensors and its application in environmental monitoring. Star array configuration of planar electromagnetic sensor is explained in this work for nitrate and sulphate detection in water. The experimental results show that the star array planar electromagnetic sensor was able to detect nitrate and sulphate at different concentrations. Artificial Neural Networks (ANN) is used to classify different levels of nitrate and sulphate contaminations in water sources. The star array planar electromagnetic sensors were subjected to different water samples contaminated by nitrate and sulphate. Classification using Wavelet Transform (WT) was applied to extract the output signals features. These features were fed to ANN consequently, for the classification of different levels of nitrate and sulphate concentration in water. The model is capable of distinguishing the concentration level in the presence of other types of contamination with a root mean square error (RMSE) of 0.0132 or 98.68% accuracy

    LC Sensor for biological tissue characterization

    Get PDF
    Over the past few decades, there has been growing interest and increased research on bio-implantable devices using RF telemetry links, enabling the continuous monitoring and recording of physiological data. However the dispersive properties of tissues make this a formidable task. In the present work, a novel technique for tissue characterization using an LC sensor is developed which allows for the extraction of the relative permittivity, and the conductivity of dispersive tissues. The resonant frequency of the sensor is monitored by measuring the input impedance of an external antenna, and correlated to the desired quantities. The impact of multi-layered dispersive tissues on the setup of the telemetry link is demonstrated where the role of the capacitor is analyzed. The sensor consists of a planar inductor, and an interdigital capacitor. Using an equivalent circuit model of the sensor that accounts for the properties of the encapsulating tissue, analytical expressions have been developed for the extraction of the tissue permittivity and conductivity. In addition, the effect of the thicknesses of the tissue layers on the sensor resonant frequency is studied. It is seen that the resonant frequency is strongly affected by the properties of the first layer, whereas additional layers prove to have little to no effect. A saturation thickness is defined that allows for the sensor to be implanted at a depth where it is only affected by the properties of the layer in which it is embedded. In order to analyze the telemetry system, a single loop antenna is evaluated in proximity to the biological tissue layer and the interaction of the electromagnetic field with the body is assessed in terms of specific absorption rate (SAR). It is studied through different multi-layered models composed of skin, fat and muscle, with typical values of tissue thickness. The introduction of multiple tissue layers as well as the misalignment effect is investigated from the SAR distribution. Finally, experimental validation has been performed with a telemetry link that consists of a loop antenna and a fabricated LC sensor immersed in single and multiple dispersive regions

    Wireless Power Transfer For Space Applications: System Design And Electromagnetic Compatibility Compliance Of Radiated Emissions

    Get PDF
    This dissertation evaluates the possibility of wireless power transfer (WPT) systems for space applications, with an emphasis in launch vehicles (rockets). After performing literature review for WPT systems, it was identified that magnetic resonance provides the more suited set of characteristics for this application. Advanced analysis, simulation and testing were performed to magnetic resonance WPT systems to acquire system performance insight. This was accomplished by evaluating/varying coupling configuration, load effects and magnetic element physical characteristics (i.e. wire material, loop radius, etc.). It was identified by analysis, circuit simulation and testing that the best coupling configuration for this application was series-series and series-shunt with Litz wire loop inductors. The main concern identified for the implementation of these systems for space applications was radiated emissions that could potentially generate electromagnetic interference (EMI). To address this EMI concern, we developed the Electromagnetic Compatibility Radiated Emissions Compliance Design Evaluation Approach for WPT Space Systems. This approach systematically allocates key analyses, simulations and tests procedures to predict WPT EMC compliance to NASA’s EMC standard Mil-Std-461E/F. Three prototype/magnetic elements were successfully assessed by implementing the WPT EMC design approach. The electric fields intensity generated by the WPT prototypes/magnetic elements tested were: 30.02 dBµV/m, 28.90 dBµV/m and 82.13 dBµV/m (requirement limit: 140 dBµV/m). All three prototypes successfully transferred power wirelessly and successfully met the NASA EMC requirements

    On the performance evaluation of lithium-ion battery systems for dynamic load functions in warship hybrid power and propulsion systems

    Get PDF
    Battery technology has developed to a juncture where high power and high energy density characteristics can be exploited for a common use battery energy storage system (ESS) for warship power systems to improve system steady state and dynamic performance. A critical review of previous research has exposed a lack of knowledge in performance assessment of battery ESS to operate as power reserve, to load level generator sets and supply laser directed energy weapons (LDEW) in a warship hybrid power and propulsion system. This research explores the performance impact of using a battery ESS in a candidate hybrid power and propulsion system. A simulation model of a lithium-ion nickel manganese cobalt based ESS was developed and validated against high rates of charge and discharge. Three system models were developed to explore the steady state, quasi-steady state and dynamic performance of the candidate power system when the battery is integrated. Three key investigations were conducted using the respective system models. The first explored the effects of ESS on the candidate power system performance when the ESS is operated as power reserve. Analysis showed that a 40% reduction in exhaust greenhouse gas (GHG) emissions was potentially achievable from the candidate warship compared to conventional operating practice. The second explored power system performance when operating the ESS operates to load level a diesel generator under quasi-steady state conditions. A 2% droop limit is suggested to mitigate against adverse quality of power supply (QPS) conditions for electrical consumers. The third investigation, and key contribution to the field of naval power systems, explored the impact of LDEW demands on the transient response of the ESS and system quality of power supply. The research findings show that the battery ESS is capable of high rates of fire for extended periods subject to state of charge operating limitations. To mitigate against adverse QPS conditions and provide operators with a realistic operating envelope to power the laser with the battery ESS, it is recommended that the power limit of the laser load should be 1.75 MW peak power
    corecore