2,526 research outputs found

    How much does a man cost? A dirty, dull, and dangerous application

    Get PDF
    Thesis (M.A.) University of Alaska Fairbanks, 2017This study illuminates the many abilities of Unmanned Aerial Vehicles (UAVs). One area of importance includes the UAV's capability to assist in the development, implementation, and execution of crisis management. This research focuses on UAV uses in pre and post crisis planning and accomplishments. The accompaniment of unmanned vehicles with base teams can make crisis management plans more reliable for the general public and teams faced with tasks such as search and rescue and firefighting. In the fight for mass acceptance of UAV integration, knowledge and attitude inventories were collected and analyzed. Methodology includes mixed method research collected by interviews and questionnaires available to experts and ground teams in the UAV fields, mining industry, firefighting and police force career field, and general city planning crisis management members. This information was compiled to assist professionals in creation of general guidelines and recommendations for how to utilize UAVs in crisis management planning and implementation as well as integration of UAVs into the educational system. The results from this study show the benefits and disadvantages of strategically giving UAVs a role in the construction and implementation of crisis management plans and other areas of interest. The results also show that the general public is lacking information and education on the abilities of UAVs. This education gap shows a correlation with negative attitudes towards UAVs. Educational programs to teach the public benefits of UAV integration should be implemented

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing technology, which enables the observation of the Earth’s surface and is currently very common in environmental research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count birds and mammals, especially those living in the water. Generally, the analytical part of the present study was divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and (4) population and behaviour studies of animals. At the end, we also synthesised all the information showing, amongst others, the advances in environmental biology because of UAV application. Considering that 33% of studies found and included in this review were published in 2017 and 2018, it is expected that the number and variety of applications of UAVs in environmental biology will increase in the future

    The potential of unmanned aerial systems for sea turtle research and conservation: A review and future directions

    Get PDF
    This is the final version. Available on open access from Inter Research via the DOI in this recordThe use of satellite systems and manned aircraft surveys for remote data collection has been shown to be transformative for sea turtle conservation and research by enabling the collection of data on turtles and their habitats over larger areas than can be achieved by surveys on foot or by boat. Unmanned aerial vehicles (UAVs) or drones are increasingly being adopted to gather data, at previously unprecedented spatial and temporal resolutions in diverse geographic locations. This easily accessible, low-cost tool is improving existing research methods and enabling novel approaches in marine turtle ecology and conservation. Here we review the diverse ways in which incorporating inexpensive UAVs may reduce costs and field time while improving safety and data quality and quantity over existing methods for studies on turtle nesting, at-sea distribution and behaviour surveys, as well as expanding into new avenues such as surveillance against illegal take. Furthermore, we highlight the impact that high-quality aerial imagery captured by UAVs can have for public outreach and engagement. This technology does not come without challenges. We discuss the potential constraints of these systems within the ethical and legal frameworks which researchers must operate and the difficulties that can result with regard to storage and analysis of large amounts of imagery. We then suggest areas where technological development could further expand the utility of UAVs as data-gathering tools; for example, functioning as downloading nodes for data collected by sensors placed on turtles. Development of methods for the use of UAVs in sea turtle research will serve as case studies for use with other marine and terrestrial taxa

    Drones on the Rise: Exploring the Current and Future Potential of UAVs

    Full text link
    Unmanned Aerial Vehicles (UAVs) have become increasingly popular in recent years due to their versatility and affordability. This article provides an overview of the history and development of UAVs, as well as their current and potential applications in various fields. In particular, the article highlights the use of UAVs in aerial photography and videography, surveying and mapping, agriculture and forestry, infrastructure inspection and maintenance, search and rescue operations, disaster management and humanitarian aid, and military applications such as reconnaissance, surveillance, and combat. The article also explores potential advancements in UAV technology and new applications that could emerge in the future, as well as concerns about the impact of UAVs on society, such as privacy, safety, security, job displacement, and environmental impact. Overall, the article aims to provide a comprehensive overview of the current state and future potential of UAV technology, and the benefits and challenges associated with its use in various industries and fields.Comment: 6 pages, IEEE Conferenc

    U.S. Unmanned Aerial Vehicles (UAVS) and Network Centric Warfare (NCW) impacts on combat aviation tactics from Gulf War I through 2007 Iraq

    Get PDF
    Unmanned, aerial vehicles (UAVs) are an increasingly important element of many modern militaries. Their success on battlefields in Afghanistan, Iraq, and around the globe has driven demand for a variety of types of unmanned vehicles. Their proven value consists in low risk and low cost, and their capabilities include persistent surveillance, tactical and combat reconnaissance, resilience, and dynamic re-tasking. This research evaluates past, current, and possible future operating environments for several UAV platforms to survey the changing dynamics of combat-aviation tactics and make recommendations regarding UAV employment scenarios to the Turkish military. While UAVs have already established their importance in military operations, ongoing evaluations of UAV operating environments, capabilities, technologies, concepts, and organizational issues inform the development of future systems. To what extent will UAV capabilities increasingly define tomorrow's missions, requirements, and results in surveillance and combat tactics? Integrating UAVs and concepts of operations (CONOPS) on future battlefields is an emergent science. Managing a transition from manned- to unmanned and remotely piloted aviation platforms involves new technological complexity and new aviation personnel roles, especially for combat pilots. Managing a UAV military transformation involves cultural change, which can be measured in decades.http://archive.org/details/usunmannedaerial109454211Turkish Air Force authors.Approved for public release; distribution is unlimited

    Non-Centralized Navigation for Source Localization by Cooperative UAVs

    Get PDF
    In this paper, we propose a distributed solution to the navigation of a population of unmanned aerial vehicles (UAVs) to best localize a static source. The network is considered heterogeneous with UAVs equipped with received signal strength (RSS) sensors from which it is possible to estimate the distance from the source and/or the direction of arrival through ad-hoc rotations. This diversity in gathering and processing RSS measurements mitigates the loss of localization accuracy due to the adoption of low-complexity sensors. The UAVs plan their trajectories on-the-fly and in a distributed fashion. The collected data are disseminated through the network via multi-hops, therefore being subject to latency. Since not all the paths are equal in terms of information gathering rewards, the motion planning is formulated as a minimization of the uncertainty of the source position under UAV kinematic and anti-collision constraints and performed by 3D non-linear programming. The proposed analysis takes into account non-line-of-sight (NLOS) channel conditions as well as measurement age caused by the latency constraints in communication.Comment: 5 pages, 3 figures, conferenc

    Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach

    Full text link
    Nowadays there is a growing research interest on the possibility of enriching small flying robots with autonomous sensing and online navigation capabilities. This will enable a large number of applications spanning from remote surveillance to logistics, smarter cities and emergency aid in hazardous environments. In this context, an emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings or concealing in large UAV networks. In contrast with current solutions mainly based on static and on-ground radars, this paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets. To this end, we describe a solution for real-time navigation of UAVs to track a dynamic target using heterogeneously sensed information. Such information is shared by the UAVs with their neighbors via multi-hops, allowing tracking the target by a local Bayesian estimator running at each agent. Since not all the paths are equal in terms of information gathering point-of-view, the UAVs plan their own trajectory by minimizing the posterior covariance matrix of the target state under UAV kinematic and anti-collision constraints. Our results show how a dynamic network of radars attains better localization results compared to a fixed configuration and how the on-board sensor technology impacts the accuracy in tracking a target with different radar cross sections, especially in non line-of-sight (NLOS) situations

    Sky-Farmers: Applications of Unmanned Aerial Vehicles (UAV) in Agriculture

    Get PDF
    Unmanned aerial vehicles (UAVs) are unpiloted flying robots. The term UAVs broadly encompasses drones, micro-, and nanoair/aerial vehicles. UAVs are largely made up of a main control unit, mounted with one or more fans or propulsion system to lift and push them through the air. Though initially developed and used by the military, UAVs are now used in surveillance, disaster management, firefighting, border-patrol, and courier services. In this chapter, applications of UAVs in agriculture are of particular interest with major focus on their uses in livestock and crop farming. This chapter discusses the different types of UAVs, their application in pest control, crop irrigation, health monitoring, animal mustering, geo-fencing, and other agriculture-related activities. Beyond applications, the advantages and potential benefits of UAVs in agriculture are also presented alongside discussions on business-related challenges and other open challenges that hinder the wide-spread adaptation of UAVs in agriculture
    • …
    corecore