423 research outputs found

    Life on a scale:Deep brain stimulation in anorexia nervosa

    Get PDF
    Anorexia nervosa (AN) is a severe psychiatric disorder marked by low body weight, body image abnormalities, and anxiety and shows elevated rates of morbidity, comorbidity and mortality. Given the limited availability of evidence-based treatments, there is an urgent need to investigate new therapeutic options that are informed by the disorder’s underlying neurobiological mechanisms. This thesis represents the first study in the Netherlands and one of a limited number globally to evaluate the efficacy, safety, and tolerability of deep brain stimulation (DBS) in the treatment of AN. DBS has the advantage of being both reversible and adjustable. Beyond assessing the primary impact of DBS on body weight, psychological parameters, and quality of life, this research is novel in its comprehensive approach. We integrated evaluations of efficacy with critical examinations of the functional impact of DBS in AN, including fMRI, electroencephalography EEG, as well as endocrinological and metabolic assessments. Furthermore, this work situates AN within a broader theoretical framework, specifically focusing on its manifestation as a form of self-destructive behavior. Finally, we reflect on the practical, ethical and philosophical aspects of conducting an experimental, invasive procedure in a vulnerable patient group. This thesis deepens our understanding of the neurobiological underpinnings of AN and paves the way for future research and potential clinical applications of DBS in the management of severe and enduring AN

    Evaluation of Data Processing and Artifact Removal Approaches Used for Physiological Signals Captured Using Wearable Sensing Devices during Construction Tasks

    Get PDF
    Wearable sensing devices (WSDs) have enormous promise for monitoring construction worker safety. They can track workers and send safety-related information in real time, allowing for more effective and preventative decision making. WSDs are particularly useful on construction sites since they can track workers’ health, safety, and activity levels, among other metrics that could help optimize their daily tasks. WSDs may also assist workers in recognizing health-related safety risks (such as physical fatigue) and taking appropriate action to mitigate them. The data produced by these WSDs, however, is highly noisy and contaminated with artifacts that could have been introduced by the surroundings, the experimental apparatus, or the subject’s physiological state. These artifacts are very strong and frequently found during field experiments. So, when there is a lot of artifacts, the signal quality drops. Recently, artifacts removal has been greatly enhanced by developments in signal processing, which has vastly enhanced the performance. Thus, the proposed review aimed to provide an in-depth analysis of the approaches currently used to analyze data and remove artifacts from physiological signals obtained via WSDs during construction-related tasks. First, this study provides an overview of the physiological signals that are likely to be recorded from construction workers to monitor their health and safety. Second, this review identifies the most prevalent artifacts that have the most detrimental effect on the utility of the signals. Third, a comprehensive review of existing artifact-removal approaches were presented. Fourth, each identified artifact detection and removal approach was analyzed for its strengths and weaknesses. Finally, in conclusion, this review provides a few suggestions for future research for improving the quality of captured physiological signals for monitoring the health and safety of construction workers using artifact removal approaches

    An attention-based deep learning approach for the classification of subjective cognitive decline and mild cognitive impairment using resting-state EEG

    Get PDF
    Objective. This study aims to design and implement the first deep learning (DL) model to classify subjects in the prodromic states of Alzheimer's disease (AD) based on resting-state electroencephalographic (EEG) signals.Approach. EEG recordings of 17 healthy controls (HCs), 56 subjective cognitive decline (SCD) and 45 mild cognitive impairment (MCI) subjects were acquired at resting state. After preprocessing, we selected sections corresponding to eyes-closed condition. Five different datasets were created by extracting delta, theta, alpha, beta and delta-to-theta frequency bands using bandpass filters. To classify SCDvsMCI and HCvsSCDvsMCI, we propose a framework based on the transformer architecture, which uses multi-head attention to focus on the most relevant parts of the input signals. We trained and validated the model on each dataset with a leave-one-subject-out cross-validation approach, splitting the signals into 10 s epochs. Subjects were assigned to the same class as the majority of their epochs. Classification performances of the transformer were assessed for both epochs and subjects and compared with other DL models.Main results. Results showed that the delta dataset allowed our model to achieve the best performances for the discrimination of SCD and MCI, reaching an Area Under the ROC Curve (AUC) of 0.807, while the highest results for the HCvsSCDvsMCI classification were obtained on alpha and theta with a micro-AUC higher than 0.74.Significance. We demonstrated that DL approaches can support the adoption of non-invasive and economic techniques as EEG to stratify patients in the clinical population at risk for AD. This result was achieved since the attention mechanism was able to learn temporal dependencies of the signal, focusing on the most discriminative patterns, achieving state-of-the-art results by using a deep model of reduced complexity. Our results were consistent with clinical evidence that changes in brain activity are progressive when considering early stages of AD

    Cognitive Decay And Memory Recall During Long Duration Spaceflight

    Get PDF
    This dissertation aims to advance the efficacy of Long-Duration Space Flight (LDSF) pre-flight and in-flight training programs, acknowledging existing knowledge gaps in NASA\u27s methodologies. The research\u27s objective is to optimize the cognitive workload of LDSF crew members, enhance their neurocognitive functionality, and provide more meaningful work experiences, particularly for Mars missions.The study addresses identified shortcomings in current training and learning strategies and simulation-based training systems, focusing on areas requiring quantitative measures for astronaut proficiency and training effectiveness assessment. The project centers on understanding cognitive decay and memory loss under LDSF-related stressors, seeking to establish when such cognitive decline exceeds acceptable performance levels throughout mission phases. The research acknowledges the limitations of creating a near-orbit environment due to resource constraints and the need to develop engaging tasks for test subjects. Nevertheless, it underscores the potential impact on future space mission training and other high-risk professions. The study further explores astronaut training complexities, the challenges encountered in LDSF missions, and the cognitive processes involved in such demanding environments. The research employs various cognitive and memory testing events, integrating neuroimaging techniques to understand cognition\u27s neural mechanisms and memory. It also explores Rasmussen\u27s S-R-K behaviors and Brain Network Theory’s (BNT) potential for measuring forgetting, cognition, and predicting training needs. The multidisciplinary approach of the study reinforces the importance of integrating insights from cognitive psychology, behavior analysis, and brain connectivity research. Research experiments were conducted at the University of North Dakota\u27s Integrated Lunar Mars Analog Habitat (ILMAH), gathering data from selected subjects via cognitive neuroscience tools and Electroencephalography (EEG) recordings to evaluate neurocognitive performance. The data analysis aimed to assess brain network activations during mentally demanding activities and compare EEG power spectra across various frequencies, latencies, and scalp locations. Despite facing certain challenges, including inadequacies of the current adapter boards leading to analysis failure, the study provides crucial lessons for future research endeavors. It highlights the need for swift adaptation, continual process refinement, and innovative solutions, like the redesign of adapter boards for high radio frequency noise environments, for the collection of high-quality EEG data. In conclusion, while the research did not reveal statistically significant differences between the experimental and control groups, it furnished valuable insights and underscored the need to optimize astronaut performance, well-being, and mission success. The study contributes to the ongoing evolution of training methodologies, with implications for future space exploration endeavors

    Evaluating EEG–EMG Fusion-Based Classification as a Method for Improving Control of Wearable Robotic Devices for Upper-Limb Rehabilitation

    Get PDF
    Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices. One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor fusion techniques have been proposed to combine EEG and EMG; however, further development is required to enhance the capabilities of EEG–EMG fusion beyond basic motion classification. To this end, the goals of this thesis were to investigate expanded methods of EEG–EMG fusion and to develop a novel control system based on the incorporation of EEG–EMG fusion classifiers. A dataset of EEG and EMG signals were collected during dynamic elbow flexion–extension motions and used to develop EEG–EMG fusion models to classify task weight, as well as motion intention. A variety of fusion methods were investigated, such as a Weighted Average decision-level fusion (83.01 ± 6.04% accuracy) and Convolutional Neural Network-based input-level fusion (81.57 ± 7.11% accuracy), demonstrating that EEG–EMG fusion can classify more indirect tasks. A novel control system, referred to as a Task Weight Selective Controller (TWSC), was implemented using a Gain Scheduling-based approach, dictated by external load estimations from an EEG–EMG fusion classifier. To improve system stability, classifier prediction debouncing was also proposed to reduce misclassifications through filtering. Performance of the TWSC was evaluated using a developed upper-limb brace simulator. Due to simulator limitations, no significant difference in error was observed between the TWSC and PID control. However, results did demonstrate the feasibility of prediction debouncing, showing it provided smoother device motion. Continued development of the TWSC, and EEG–EMG fusion techniques will ultimately result in wearable devices that are able to adapt to changing loads more effectively, serving to improve the user experience during operation

    Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9 International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    Cyberbullying in educational context

    Get PDF
    Kustenmacher and Seiwert (2004) explain a man’s inclination to resort to technology in his interaction with the environment and society. Thus, the solution to the negative consequences of Cyberbullying in a technologically dominated society is represented by technology as part of the technological paradox (Tugui, 2009), in which man has a dual role, both slave and master, in the interaction with it. In this respect, it is noted that, notably after 2010, there have been many attempts to involve artificial intelligence (AI) to recognize, identify, limit or avoid the manifestation of aggressive behaviours of the CBB type. For an overview of the use of artificial intelligence in solving various problems related to CBB, we extracted works from the Scopus database that respond to the criterion of the existence of the words “cyberbullying” and “artificial intelligence” in the Title, Keywords and Abstract. These articles were the subject of the content analysis of the title and, subsequently, only those that are identified as a solution in the process of recognizing, identifying, limiting or avoiding the manifestation of CBB were kept in the following Table where we have these data synthesized and organized by years
    • …
    corecore