1,714 research outputs found

    Assessment of Manure Treatment Technology Adoption and Feedlot Runoff Monitoring Opportunities

    Get PDF
    Livestock products contain valuable nutrients that enhance human health, and their production generates positive local and national economic impacts. The livestock sector also deals with large quantities of environmentally important nutrients in manure. The purpose of this thesis is to further the aims of researchers and educators working at the intersection of livestock production and the environment to identify and promote best practices for livestock production and manure management that are economically and environmentally sustainable. The second chapter explored options to evaluate nutrient flows in feedlot runoff at the pen scale. Pen scale monitoring is an important consideration for research into management effects on nutrient flows. Thus, two runoff monitoring systems were designed for the “700 alley” section of the feedlot at the Eastern Nebraska Research Extension and Education Center. The first design utilizes an edge-of-field runoff monitoring system that utilizes flumes, automatic sensors, and automatic samplers to monitor runoff flow and composition, with an estimated cost of 13,100perpen.Thesecondoptioninvolvesarunoffcollectionconcretetankwithfivedifferenttanksizes,withlargertanksbeingabletoholdrunofffromagreatershareofrunoffevents.Toautomatethetanksystems,anArduinocontrolledautomaticvalveconnectedtoanInternetofThingsplatformviaWiFiwasdesignedandaprototypewastested.Theestimatedcostoftheautomatictankssystemsisbetween13,100 per pen. The second option involves a runoff collection concrete tank with five different tank sizes, with larger tanks being able to hold runoff from a greater share of runoff events. To automate the tank systems, an Arduino-controlled automatic valve connected to an Internet of Things platform via Wi-Fi was designed and a prototype was tested. The estimated cost of the automatic tanks systems is between 2,200 and $3,300, depending on tank size. In the third chapter, surveys and focus groups were conducted to understand manure treatment technology usage and the decision-making process behind the adoption of those technologies among swine and dairy producers in the Midwest. The surveyed dairy and swine producers indicated that they most valued technology with low management and maintenance demand, adaptability to specific farm conditions, and high performance capacity. The primary desired outcomes of treatment systems currently in use on the surveyed farms were compatibility with the preferred land application system, retention of storage or treatment capacity, and attainment of regulatory requirements. For future technology adoption, technologies that allow nutrient exports and reduce workload were favored in addition to the current operational outcomes. Initial cost, operational cost, and return on investment are the main barriers to upgrading the manure management system in swine and dairy farms; and management demand is an important barrier in swine operations. Changes in regulations and fluctuating availability of manure hauling services are the important trends affecting farm manure management. For future extension programming, university lead farmer discussion groups in manure management are recommended as producers value and trust information coming from their peers. Advisor: Amy M. Schmidt and Richard Stowel

    Abstracts of Recent Leopold Center Projects

    Get PDF
    Read abstracts of research, education and demonstration projects that received funds from the Leopold Center. The 32-page document includes more than 350 grant projects completed from 1996 through 2014, listed by topic and year of completion

    Selected Papers SAEA 2011 Annual Meetings

    Get PDF
    Teaching/Communication/Extension/Profession,

    Farmers' Perspectives of the Benefits and Risks in Precision Livestock Farming in the EU Pig and Poultry Sectors

    Get PDF
    Simple Summary Smart farming is a concept of agricultural innovation that combines technological, social, economic and institutional changes. It employs novel practices of technologies and farm management at various levels (specifically with a focus on the system perspective) and scales of agricultural production, helping the industry meet the challenges stemming from immense food production demands, environmental impact mitigation and reductions in the workforce. Precision Livestock Farming (PLF) systems will help the industry meet consumer expectations for more environmentally and welfare-friendly production. However, the overwhelming majority of these new technologies originate from outside the farm sector. The adoption of new technologies is affected by the development, dissemination and application of new methodologies, technologies and regulations at the farm level, as well as quantified business models. Subsequently, the utilization of PLF in the pig and especially the poultry sectors should be advocated (the latter due to the foreseen increase in meat production). Therefore, more significant research efforts than those that currently exist are mainly required in the poultry industry. The investigation of farmers' attitudes and concerns about the acceptance of technological solutions in the livestock sector should be integrally incorporated into any technological development.Abstract More efficient livestock production systems are necessary, considering that only 41% of global meat demand will be met by 2050. Moreover, the COVID-19 pandemic crisis has clearly illustrated the necessity of building sustainable and stable agri-food systems. Precision Livestock Farming (PLF) offers the continuous capacity of agriculture to contribute to overall human and animal welfare by providing sufficient goods and services through the application of technical innovations like digitalization. However, adopting new technologies is a challenging issue for farmers, extension services, agri-business and policymakers. We present a review of operational concepts and technological solutions in the pig and poultry sectors, as reflected in 41 and 16 European projects from the last decade, respectively. The European trend of increasing broiler-meat production, which is soon to outpace pork, stresses the need for more outstanding research efforts in the poultry industry. We further present a review of farmers' attitudes and obstacles to the acceptance of technological solutions in the pig and poultry sectors using examples and lessons learned from recent European projects. Despite the low resonance at the research level, the investigation of farmers' attitudes and concerns regarding the acceptance of technological solutions in the livestock sector should be incorporated into any technological development

    Essays on Energy Economics and Environmental Policies

    Get PDF
    This dissertation contains three distinct empirical chapters in applied energy and environmental economics. Each chapter focuses on a unique set of research questions, methods, and data. The unifying motivation therein concerns the development of renewable or alternative low-carbon energy sources as a policy response to the challenges of climate change mitigation, local and regional environmental quality issues, and energy security concerns. Economic and environmental evaluation of the energy policies coupled with understanding energy use patterns is of paramount importance. Together, the empirical chapters focus on demand, supply, and policy aspects of energy markets in the United States (US). First, Chapter 2 evaluates the impacts of the Renewable Portfolio Standard (RPS) on renewable electricity capacity. RPS is a state-level policy that requires electricity suppliers to include a certain proportion (or quantity) of renewable electricity in their total electricity sales over a specified time period. The chapter employs a fixed-effects panel regression model and a spatial econometric methodology using panel data spanning 47 states between 1990 and 2014. Thus, and importantly, the analyses incorporate salient spatial and temporal heterogeneities of RPS (i.e., varying RPS features across states and years). The results illustrate that the RPS has driven a 194 MW increase in overall renewable capacity (representing more than one third of the average electricity capacity developed between 1990 and 2014 in 47 states). The results also suggest that the impacts of RPS, while exhibiting spatial dependencies, vary depending on the renewable energy source. RPS positively impacts renewable electricity capacity, the share of renewable electricity capacity in total electricity capacity, as well as the shares of solar and wind capacity in total electricity capacity (the impacts become 1.3 times larger for solar and about two thirds fold larger for wind with reference to their average counterparts). However, the impacts of RPS are not statistically significant for biomass or geothermal resources. With the consistent patterns of the impacts of RPS across modeling scenarios, RPS adoption or lack thereof in different states, policy age, provision of renewable energy certificates (REC), and annually mandated obligations for renewable electricity in the overall electricity mix are among the critical factors which determine the efficacy of RPS. The positive impacts of RPS on solar and wind capacity are consistent with the relatively emphasized focus of RPS legislation across states which serves to prioritize these two renewable energy sources. Notwithstanding limitations in the available data (and the possibility that improvements in this respect over time would enable a more nuanced and higher-resolution investigation), the current findings provide guidance on how RPS is performing. The significantly positive impact of flexible REC provisions (allowing REC to be generated in any state), coupled with spatial spillover effects indicate the interstate marketing possibilities of renewable energy (and energy credits). The results (with respect to the significant contribution of different RPS attributes) suggest that the critical role the state level policies can make to meet national level goals about climate change and energy mix. More specifically, the results imply that scaling up RPS proliferation across the states (guided by policy treatment effects, coupled with spatial dependencies of both the RPS and renewable electricity) and specifying RPS mandates by renewable energy sources (guided by significantly positive impacts for solar and wind), at least up to the point where renewable energy sector obtains efficiency gains (economies of scales and allocative efficiency) or to the situation where better alternative to the RPS becomes available (e.g., market based carbon pricing policy, which can be least-cost carbon mitigation mechanism), can play an important role in generating transformative advances in renewable electricity sector. Next, Chapter 3 reports on an economic and environmental assessment to determine the optimal manure management strategy for large dairies. More specifically, a cost-benefit analysis and a life cycle assessment are carried out based on publicly available secondary data, motivated by the fact that improper management of dairy manure can result in adverse environmental and public health impacts. The results illustrate the comparatively high economic and environmental benefits associated with an integrated framework of bioenergy production as an alternative approach to manure management. Analyses are conducted under several scenarios (exploring the potential market for nutrients and greenhouse gases), all of which confirm that co-producing bioenergy in this context is more profitable than traditional on-site management approaches. The results imply that the livestock sector can maximize economic and environmental gains by integrating nutrient recovery and bioenergy production in alternative manure management considerations (rather than simply considering dairy manure as a waste disposal problem). The final empirical investigation, Chapter 4, explores the temporal and spatial variation of sectoral natural gas demand in the US. A fixed-effects panel regression model is configured to analyze monthly data between 2001 and 2015. The results demonstrate the inelastic price responses at state, regional, and national levels across natural gas consumption sectors in the US, reflecting the importance of natural gas in contemporary energy systems. The implication is that price based policies, such as energy efficiency standards or energy saving targets in building codes, in the natural gas sector may not be effective (but, since the magnitudes of price elasticity vary across economic sectors, states and regions, efficacy of such price based policies will vary across these different dimensions). On the other hand, the inelastic price responses may reveal resiliency (i.e., stable market) of natural gas market to the changes in natural gas prices that may be driven by policy changes in other segment of the energy market (e.g., renewable energy supporting policies may increase natural gas prices). The resulting implication can be that natural gas that holds critical significance in the contemporary energy system from both environmental and economic perspectives can also serve as a transition fuel. The statistically significant weather impacts in terms of heating degree days (HDD) and cooling degree days (CDD) revealed in this analysis are consistent with the extant energy demand literature, where higher HDD stimulates greater consumption of natural gas in the residential sector while CDD appears to increase natural gas consumption for electricity production. The impacts with regard to weather attributes (HDD and CDD) also help to design informed policies to achieve various energy management goals (e.g., attaining energy efficiency or promoting alternative clean energy by quantifying the repercussions of changes in consumers’ responses to natural gas demand across climatic seasons in the energy market stability). Collectively, these empirical chapters offer novel and important implications concerning energy market structures (supply and demand aspects), the environmental and economic assessment for renewable energy production potentials, and the policy responses, which have been or should be designed, to ensure the multi-dimensional sustainability of complex energy systems

    Adoption of agricultural conservation practices in the United States: Evidence from 35 years of quantitative literature

    Get PDF
    This is a comprehensive review of all published, quantitative studies focused on adoption of agricultural conservation practices in the United States between 1982 and 2017. This review finds that, taken as a whole, few independent variables have a consistent statistically significant relationship with adoption. Analyses showed that variables positively associated with adoption include the farmer self-identifying primarily as stewardship motivated or otherwise nonfinancially motivated, environmental attitudes, a positive attitude toward the particular program or practice, previous adoption of other conservation practices, seeking and using information, awareness of programs or practices, vulnerable land, greater farm size, higher levels of income and formal education, engaging in marketing arrangements, and positive yield impact expected. Some variables often thought to be important, such as land tenure, did not emerge as consistently important in this cross-study review. Other variables, such as farmers\u27 sense of place, training, presence of institutional conditions supporting adoption, and the role of collective decision making are not measured in enough studies to draw conclusions but potentially have a relationship with adoption decisions. Implications for how to promote conservation adoption and directions for future research are discussed. Because positive attitudes and awareness of conservation programs or practices are positive predictors of adoption, practitioners should share benefits of specific practices and programs and leverage existing practice adoption. Further work to explore relationships between conservation adoption and the role of farmer identity, nuances of land tenure, and the influence of structural factors is needed. Moreover, we suggest that future research should focus on the impact of different messages and avenues of reaching farmers in order to continue to inform conservation practices. Future research should consider both individual and institutional factors that facilitate and constrain adoption
    corecore