48 research outputs found

    Functional network correlates of language and semiology in epilepsy

    Get PDF
    Epilepsy surgery is appropriate for 2-3% of all epilepsy diagnoses. The goal of the presurgical workup is to delineate the seizure network and to identify the risks associated with surgery. While interpretation of functional MRI and results in EEG-fMRI studies have largely focused on anatomical parameters, the focus of this thesis was to investigate canonical intrinsic connectivity networks in language function and seizure semiology. Epilepsy surgery aims to remove brain areas that generate seizures. Language dysfunction is frequently observed after anterior temporal lobe resection (ATLR), and the presurgical workup seeks to identify the risks associated with surgical outcome. The principal aim of experimental studies was to elaborate understanding of language function as expressed in the recruitment of relevant connectivity networks and to evaluate whether it has value in the prediction of language decline after anterior temporal lobe resection. Using cognitive fMRI, we assessed brain areas defined by parameters of anatomy and canonical intrinsic connectivity networks (ICN) that are involved in language function, specifically word retrieval as expressed in naming and fluency. fMRI data was quantified by lateralisation indices and by ICN_atlas metrics in a priori defined ICN and anatomical regions of interest. Reliability of language ICN recruitment was studied in 59 patients and 30 healthy controls who were included in our language experiments. New and established language fMRI paradigms were employed on a three Tesla scanner, while intellectual ability, language performance and emotional status were established for all subjects with standard psychometric assessment. Patients who had surgery were reinvestigated at an early postoperative stage of four months after anterior temporal lobe resection. A major part of the work sought to elucidate the association between fMRI patterns and disease characteristics including features of anxiety and depression, and prediction of postoperative language outcome. We studied the efficiency of reorganisation of language function associated with disease features prior to and following surgery. A further aim of experimental work was to use EEG-fMRI data to investigate the relationship between canonical intrinsic connectivity networks and seizure semiology, potentially providing an avenue for characterising the seizure network in the presurgical workup. The association of clinical signs with the EEG-fMRI informed activation patterns were studied using the data from eighteen patients’ whose seizures and simultaneous EEG-fMRI activations were reported in a previous study. The accuracy of ICN_atlas was validated and the ICN construct upheld in the language maps of TLE patients. The ICN construct was not evident in ictal fMRI maps and simulated ICN_atlas data. Intrinsic connectivity network recruitment was stable between sessions in controls. Amodal linguistic processing and the relevance of temporal intrinsic connectivity networks for naming and that of frontal intrinsic connectivity networks for word retrieval in the context of fluency was evident in intrinsic connectivity networks regions. The relevance of intrinsic connectivity networks in the study of language was further reiterated by significant association between some disease features and language performance, and disease features and activation in intrinsic connectivity networks. However, the anterior temporal lobe (ATL) showed significantly greater activation compared to intrinsic connectivity networks – a result which indicated that ATL functional language networks are better studied in the context of the anatomically demarked ATL, rather than its functionally connected intrinsic connectivity networks. Activation in temporal lobe networks served as a predictor for naming and fluency impairment after ATLR and an increasing likelihood of significant decline with greater magnitude of left lateralisation. Impairment of awareness served as a significant classifying feature of clinical expression and was significantly associated with the inhibition of normal brain functions. Canonical intrinsic connectivity networks including the default mode network were recruited along an anterior-posterior anatomical axis and were not significantly associated with clinical signs

    Transcriptional Regulation of Cardiac Development and Disease

    Get PDF
    This reprint contains original research and review articles describing recent advances in our understanding of the transcriptional regulation of cardiac development and disease mechanisms. All articles were originally published in the International Journal of Molecular Sciences (IJMS)

    Quantitative imaging in radiation oncology

    Get PDF
    Artificially intelligent eyes, built on machine and deep learning technologies, can empower our capability of analysing patients’ images. By revealing information invisible at our eyes, we can build decision aids that help our clinicians to provide more effective treatment, while reducing side effects. The power of these decision aids is to be based on patient tumour biologically unique properties, referred to as biomarkers. To fully translate this technology into the clinic we need to overcome barriers related to the reliability of image-derived biomarkers, trustiness in AI algorithms and privacy-related issues that hamper the validation of the biomarkers. This thesis developed methodologies to solve the presented issues, defining a road map for the responsible usage of quantitative imaging into the clinic as decision support system for better patient care

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Intraoperative, Quantitative, and Non-Contact Blood Volume Flow Measurement via Indocyanine Green Fluorescence Angiography

    Get PDF
    In vielen Fällen unterziehen sich Patienten einer Revaskularisationsoperation wenn sie an einer zerebrovaskulären Erkrankung leiden, die eine Hypoperfusion des Gehirns verursacht. Dieser chirurgische Eingriff wird häufig als offene Operation durchgeführt und hat das Ziel, die Gefäßfunktion, insbesondere den Blutfluss, wiederherzustellen. Hierzu wird eine Anastomose (Verbindung von Arterien) angelegt, um den Fluss zu einem hypoperfundierten Gehirnareal zu erhöhen. In ungefähr 10% der Eingriffe treten nach der Operation Komplikationen auf, die zum Teil auf eine unzureichende Durchflusssteigerung zurückgeführt werden. Daher sollte der Blutfluss intraoperativ überprüft werden, um die Qualität des Eingriffs im Operationssaal zu beurteilen und schnell eingreifen zu können. Damit könnte ein negativer Ausgang für den Patienten verhindert werden. Der derzeitige Stand der Technik in der intraoperativen und quantitativen Blutflussmessung ist die Nutzung der Ultraschall-Transitzeit-Durchflusssonde. Sie gibt einen quantitativen Flusswert an, muss jedoch das Gefäß umschließen. Dies ist einerseits umständlich für den Chirurgen und andererseits birgt es das Risiko von Kontaminationen, Gefäßquetschungen und der Gefäßruptur. Eine alternative Methode ist die Indocyaningrün (ICG) Fluoreszenzangiographie (FA), welche eine kamerabasierte Methode ist. Sie ist der Stand der Technik in der hochauflösenden anatomischen Visualisierung des Situs und kann zusätzlich dem Chirurgen eine qualitative funktionelle Darstellung der Gefäße im Sichtfeld liefern. Der Stand der Wissenschaft zur Quantifizierung des Blutflusses mittels ICG-FA konnten bisher keine verlässlichen Fluss- werte liefern. Die vorliegende Arbeit analysiert und verbessert die Eignung von ICG FA zu Bereitstellung von verlässlichen und quantitativen Blutflusswerten, indem 1. geklärt wird, wie akkurat die Messung durchgeführt werden kann. 2. Methoden zur Verbesserung der Genauigkeit entwickelt werden. 3. die Existenz eines systematischen Fehlers abgeleitet wird. 4. eine Methode zur Kompensation des systematischen Fehlers entwickelt wird. 5. ein Algorithmus zur Verarbeitung der eingehenden Videodaten für eine Ausgabe eines Durchflusswertes bereitgestellt wird. 6. die Validierung der vorgeschlagenen Methoden und des Arbeitsablaufs in einer ex vivo und in vivo Studie durchgeführt wird. Die in dieser Arbeit vorgeschlagene Messung basiert auf dem systemic mean transit time theorem für Systeme mit einem Eingang und einem Ausgang. Um den Fluss zu berechnen müssen die Transitzeit eines ICG-Bolus für eine zu bestimmenden Strecke und die Querschnittsfläche des Gefäßes ermittelt werden. Es wurden Methoden entwickelt, um den Blutvolumenstrom zu messen und um Fehlerquellen bei dieser Messung der einzelnen Parameter zu identifizieren, quantifizieren und reduzieren. Die statistischen Fehler bei der Messung der Transitstrecke und der Transitzeit des ICG- Bolus sowie der Querschnittsfläche des Gefäßes werden in der Forschung oft vernachlässigt. In dieser Arbeit wurden die Fehler mit Hilfe von in silico Modellen quantifiziert. Es zeigte sich, dass der Fehler zu groß für eine zuverlässige Blutflussmessung ist und daher Methoden zu seiner Reduzierung benötigt werden. Um den Fehler bei der Längenmessung deutlich zu reduzieren, wurde eine Methode vorgestellt, welche die diskrete Mittellinie wieder in eine kontinuierliche überführt. Dabei wird der Fehler in der Längenmessung signifikant reduziert und der Fehler von der räumlichen Orientierung der Struktur entkoppelt. In ähnlicher Weise wurde eine Methode vorgestellt, welche die gemessenen diskreten Indikatorverdünnungskurven (IDCs) ebenso in kontinuierliche überführt, um den Fehler in der Laufzeitmessung des ICG-Bolus zu reduzieren. Der propagierte statistische Fehler der Blutflussmessung wurde auf einen akzeptablen und praktikablen Wert von 20 % bis 30 % reduziert. Die Präsenz eines systematischen Fehlers bei der optischen Messung des Blutflusses wurde identifiziert und aus der Definition des Volumenflusses theoretisch abgeleitet. Folgend wird eine Methode zur Kompensation des Fehlers vorgestellt. Im ersten Schritt wird eine Fluid-Strömungssimulation genutzt, um die räumlich-zeitliche Konzentration des ICG in einem Blutgefäß zu berechnen. Anschließend wird die Konzentration an ein neu entwickeltes Fluoreszenz-Monte-Carlo-Multizylinder (FMCMC) Modell übergeben, das die Ausbreitung von Photonen in einem Gefäß simuliert. Dabei wird der Ort der Fluoreszenzereignisse der emittierten Photonen ermittelt und der systematische Fehler bestimmt. Dies ermöglicht die Kompensation des systematischen Fehlers. Es zeigte sich, dass dieser Fehler unabhängig von dem Volumenfluss ist, solange die Strömung laminar ist, aber abhängig vom Durchmesser des Gefäßes und dem Zeitpunkt der Messung. Die Abhängigkeit vom Durchmesser ist reduziert bei Messungen zu einem früheren Zeitpunkt. Daher ist es vorteilhaft, die erste Ankunft des ICG-Bolus zur Bestimmung der Transitzeit zu verwenden, um den Einfluss des Durchmessers auf den Fehler zu verringern und somit die Messung robuster durchzuführen. Um die Genauigkeit der Messung in einem Experiment zu beweisen, wurde ein ex vivo Experiment unter Verwendung von Schweineblut und Kaninchen Aorten konzipiert und durchgeführt. Es zeigte sich, dass der durch den vorgeschlagenen Algorithmus ermittelte Fluss mit der Referenzmessung (einem industriellem Durchflussmesser) übereinstimmt. Die statistische Streuung der gemessenen Flussdaten durch den Algorithmus stimmte mit der zuvor ermittelten statistischen Fehlerspanne überein, was den in silico Ansatz validiert. Es wurde eine retrospektive in vivo Studie an Menschen durchgeführt, die sich einer extrakraniellen-zu-intrakraniellen (EC-IC) Bypass Operation unterzogen hatten. Die Analyse der FA-Daten ergab eine gute Übereinstimmung mit der klinischen Referenzmethode, jedoch mit dem großen Vorteil, dass kein Kontakt zum Gewebe erforderlich war. Zusätzlich wurde gezeigt, dass simultan Flusswerte für mehrere Gefäße im Sichtfeld der Kamera gemessen werden können. Die vorgestellten Ergebnisse sind ein Proof of Concept für die Eignung der vorgestellten intraoperativen, quantitativen und optischen Messung des Blutvolumenstroms mittels ICG FA. Diese Arbeit ebnet den Weg für den klinischen Einsatz dieser Methode in Ergänzung zum aktuellen klinischen Stand der Technik. Sie könnte zukünftig dem Chirurgen eine neuartige Messung des Blutvolumenstroms zur Verfügung stellen und dabei potentiell das Risiko einer Komplikation reduzieren und damit das Wohl der Patienten verbessern
    corecore