18,110 research outputs found

    The Contributory Effect of Latency on the Quality of Voice Transmitted over the Internet

    Get PDF
    Deployment of Voice over Internet Protocol (VoIP) is rapidly growing worldwide due to the new services it provides and cost savings derived from using a converged IP network. However, voice quality is affected by bandwidth, delay, latency, jitter, packet loss e.t.c. Latency is the dominant factor that degrades quality of voice transfer. There is therefore strong need for a study on the effect of Latency with the view to improving Quality of Voice (QoV) in VoIP network. In this work, Poisson probability theorem, Markov Chain, Probability distribution theorems and Network performance metric were used to study the effect of latency on QoS in VoIP network. This is achieved by considering the effect of latency resulting from several components between two points in multiple networks. The NetQoS Latency Calculator, Net-Cracker Professional® for Modeling and Matlab/Simulink® for simulating network were tools used and the results obtained compare favourably well with theoretical facts

    Video streaming

    Get PDF

    Micro protocol engineering for unstructured carriers: On the embedding of steganographic control protocols into audio transmissions

    Full text link
    Network steganography conceals the transfer of sensitive information within unobtrusive data in computer networks. So-called micro protocols are communication protocols placed within the payload of a network steganographic transfer. They enrich this transfer with features such as reliability, dynamic overlay routing, or performance optimization --- just to mention a few. We present different design approaches for the embedding of hidden channels with micro protocols in digitized audio signals under consideration of different requirements. On the basis of experimental results, our design approaches are compared, and introduced into a protocol engineering approach for micro protocols.Comment: 20 pages, 7 figures, 4 table

    3G networks in emergency telemedicine - An in-depth evaluation & analysis

    Get PDF
    The evolution of telecommunications technologies in connection with the robustness and the fidelity these new systems provide, have opened up many new horizons as regards the provision of healthcare and the quality of service from the side of the experts to that of the patients. The purpose of this paper is to evaluate the third generation telecommunications systems that are only recently being deployed in Europe, as well as argue on why a transition from 2G and 2.5G to 3G telecommunications systems could prove to be crucial, especially in relation to emergency telemedicine. The experimental results of the use of these systems are analyzed, the implementation of a tele-consultation unit is presented and their exploitation capabilities are explored

    Using Transcoding for Hidden Communication in IP Telephony

    Get PDF
    The paper presents a new steganographic method for IP telephony called TranSteg (Transcoding Steganography). Typically, in steganographic communication it is advised for covert data to be compressed in order to limit its size. In TranSteg it is the overt data that is compressed to make space for the steganogram. The main innovation of TranSteg is to, for a chosen voice stream, find a codec that will result in a similar voice quality but smaller voice payload size than the originally selected. Then, the voice stream is transcoded. At this step the original voice payload size is intentionally unaltered and the change of the codec is not indicated. Instead, after placing the transcoded voice payload, the remaining free space is filled with hidden data. TranSteg proof of concept implementation was designed and developed. The obtained experimental results are enclosed in this paper. They prove that the proposed method is feasible and offers a high steganographic bandwidth. TranSteg detection is difficult to perform when performing inspection in a single network localisation.Comment: 17 pages, 16 figures, 4 table
    corecore