2,784 research outputs found

    Arrhythmic risk in elderly patients candidates to transcatheter aortic valve replacement. predicative role of repolarization temporal dispersion

    Get PDF
    Degenerative aortic valve stenosis (AS) is associated to ventricular arrhythmias and sudden cardiac death, as well as mental stress in specific patients. In such a context, substrate, autonomic imbalance as well as repolarization dispersion abnormalities play an undoubted role. Aim of the study was to evaluate the increase of premature ventricular contractions (PVC) and complex ventricular arrhythmias during mental stress in elderly patients candidate to the transcatheter aortic valve replacement (TAVR). In eighty-one elderly patients with AS we calculated several short-period RRand QT-derived variables at rest, during controlled breathing and during mild mental stress, the latter being represented by a mini-mental state evaluation (MMSE). All the myocardial repolarization dispersion markers worsened during mental stress (p < 0.05). Furthermore, during MMSE, low frequency component of the RR variability increased significantly both as absolute power (LFRR) and normalized units (LFRRNU) (p < 0.05) as well as the low-high frequency ratio (LFRR/HFRR) (p < 0.05). Eventually, twenty-four (30%) and twelve (15%) patients increased significantly PVC and, respectively, complex ventricular arrhythmias during the MMSE administration. At multivariate logistic regression analysis, the standard deviation of QTend (QTesd), obtained at rest, was predictive of increased PVC (odd ratio: 1.54, 95% CI 1.14–2.08; p = 0.005) and complex ventricular arrhythmias (odd ratio: 2.31, 95% CI 1.40–3.83; p = 0.001) during MMSE. The QTesd showed the widest sensitive-specificity area under the curve for the increase of PVC (AUC: 0.699, 95% CI: 0.576–0.822, p < 0.05) and complex ventricular arrhythmias (AUC: 0.801, 95% CI: 0.648–0.954, p < 0.05). In elderly with AS ventricular arrhythmias worsened during a simple cognitive assessment, this events being a possible further burden on the outcome of TAVR. QTesd might be useful to identify those patients with the highest risk of ventricular arrhythmias. Whether the TAVR could led to a QTesd reduction and, hence, to a reductionof thearrhythmicburdenin thissettingofpatients isworthytobe investigated

    Physiologic heart rate dependency of the PQ interval and its sex differences

    Get PDF
    On standard electrocardiogram (ECG) PQ interval is known to be moderately heart rate dependent, but no physiologic details of this dependency have been established. At the same time, PQ dynamics is a clear candidate for non-invasive assessment of atrial abnormalities including the risk of atrial fibrillation. We studied PQ heart rate dependency in 599 healthy subjects (aged 33.5 ± 9.3 years, 288 females) in whom drug-free day-time 12-lead ECG Holters were available. Of these, 752,517 ECG samples were selected (1256 ± 244 per subject) to measure PQ and QT intervals and P wave durations. For each measured ECG sample, 5-minute history of preceding cardiac cycles was also obtained. Although less rate dependent than the QT intervals (36 ± 19% of linear slopes), PQ intervals were found to be dependent on underlying cycle length in a highly curvilinear fashion with the dependency significantly more curved in females compared to males. The PQ interval also responded to the heart rate changes with a delay which was highly sex dependent (95% adaptation in females and males after 114.9 ± 81.1 vs 65.4 ± 64.3 seconds, respectively, p < 0.00001). P wave duration was even less rate dependent than the PQ interval (9 ± 10% of linear QT/RR slopes). Rate corrected P wave duration was marginally but significantly shorter in females than in males (106.8 ± 8.4 vs 110.2 ± 7.9 ms, p < 0.00001). In addition to establishing physiologic standards, the study suggests that the curvatures and adaptation delay of the PQ/cycle-length dependency should be included in future non-invasive studies of atrial depolarizations

    Time series kernel similarities for predicting Paroxysmal Atrial Fibrillation from ECGs

    Get PDF
    We tackle the problem of classifying Electrocardiography (ECG) signals with the aim of predicting the onset of Paroxysmal Atrial Fibrillation (PAF). Atrial fibrillation is the most common type of arrhythmia, but in many cases PAF episodes are asymptomatic. Therefore, in order to help diagnosing PAF, it is important to design procedures for detecting and, more importantly, predicting PAF episodes. We propose a method for predicting PAF events whose first step consists of a feature extraction procedure that represents each ECG as a multi-variate time series. Successively, we design a classification framework based on kernel similarities for multi-variate time series, capable of handling missing data. We consider different approaches to perform classification in the original space of the multi-variate time series and in an embedding space, defined by the kernel similarity measure. We achieve a classification accuracy comparable with state of the art methods, with the additional advantage of detecting the PAF onset up to 15 minutes in advance

    Prognostic value of Holter monitoring in congestive heart failure

    Get PDF
    Congestive heart failure (CHF) is an increasingly widespread, costly and deadly disease, frequently named as epidemics of the 21 century. Despite advancement in modern treatment, mortality rate in CHF patients remains high. Therefore, risk stratification in patients with CHF remains one of the major challenges of contemporary cardiology. Electrocardiographic parameters based on ambulatory Holter monitoring have been documented to be independent risk predictors of total mortality and progression of heart failure. Recent years brought an increased interest in evaluation of dynamic Holter-derived ECG markers reflecting changes in heart rate and ventricular repolarization behavior. It is widely accepted that structural changes reflecting myocardial substrate are better identified by means of imaging techniques, Holter monitoring on the other hand provides complementary information on myocardial vulnerability and autonomic nervous system. Therefore, combining the electrocardiographic stratification with assessment of myocardial substrate may provide the complex insight into interplay between factors contributing to death. The present article reviews the literature data on the prognostic role of various Holter-based ECG parameters, with special emphasis to dynamic ECG risk markers - heart rate variability, heart rate turbulence, repolarization dynamics and variability - in predicting mortality, as well as different modes of death in patients with CH

    International criteria for electrocardiographic interpretation in athletes: Consensus statement.

    Get PDF
    Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly, advanced by a growing body of scientific data and investigations that both examine proposed criteria sets and establish new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington (USA), to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD

    Clinical cardiac electrophysiologic evaluation of the positive inotropic agent, DPI 201-106

    Get PDF
    DPI 201-106 is a new positive inotropic agent. The cardiac electrophysiology of 16 patients was studied before and during DPI 201-106 administration (loading dose of intravenous DPI 201-106, 1·8 mg kg−1 h−1 administered over 10 min, followed by a maintenance dose of 0·2 mg kg−1 h−1). DPI 201-106 had no effect on the sinus node. The AH interval during fixed-rate atrial pacing became prolonged during DPI 201-106 infusion. There was a significant prolongation of the QT interval [QT (corrected), 417 ± 22 to 502 ± 35 ms, P<0·05; QT (atrial pacing at 600 ms), 374 ±17 to 419 ± 23 ms, P<0·05; QT (ventricular pacing at 600 ms), 409 ± 37 to 449 ± 30 ms, P<0·05]. The ventricular effective refractory period significantly prolonged during DPI 201-106 administration (242 ± 21 to 287 ± 56 ms, P < 0·05), but the supernormal-period duration decreased. The atrial effective refractory period was shortened in four patients and prolonged in one (261 ± 67 to 240 ± 53 ms, NS). The corrected atrial repolarization time (PTac) shortened significantly during DPI 210-106 infusion (479 ± 26 to 445 ± 22 ms at 20 min of the maintenance dose, P<0·05). Atrial fibrillation was initiated in five patients during DPI infusion, but no ventricular arrhythmia was provoked. These findings suggest that DPI 201-106 has novel differential electrophysiological effects on atria and ventricle

    Kardia Mobile applicability in clinical practice: A comparison of Kardia Mobile and standard 12-lead electrocardiogram records in 100 consecutive patients of a tertiary cardiovascular care center

    Get PDF
    Background: Mobile devices are gaining a rising number of users in all countries around the globe. Novel solutions to diagnose patients with out-of-hospital onset of arrhythmic symptoms can be easily used to record such events, but the effectiveness of these devices remain unknown.Methods: In a group of 100 consecutive patients of an academic cardiology care center (mean age 68 ± 14.2 years, males: 66%) a standard 12-lead electrocardiogram (ECG) and a Kardia Mobile (KM) record were registered. Both versions were assessed by three independant groups of physicians.Results: The analysis of comparisons for standard ECG and KM records showed that the latter is of lower quality (p &lt; 0.001). It was non-inferior for detection of atrial fibrillation and atrial flutter, showed weaker rhythm detection in pacemaker stimulation (p = 0.008), and was superior in sinus rhythm detection (p = 0.02), though. The sensitivity of KM to detect pathological Q-wave was low compared to specificity (20.6% vs. 93.7%, respectively, p &lt; 0.001). Basic intervals measured by the KM device, namely PQ, RR, and QT were significantly different (shorter) than those observed in the standard ECG method (160 ms vs. 180 ms [p &lt; 0.001], 853 ms vs. 880 ms [p = 0.03] and 393 ms vs. 400 ms[p &lt; 0.001], respectively).Conclusions: Initial and indicative value of atrial fibrillation and atrial flutter detection in KM is comparable to results achieved in standard ECG. KM was superior in detection of sinus rhythm than eye-ball evaluation of 12-lead ECG. Though, the PQ and QT intervals were shorter in KM as compared to 12-lead ECG. Clinical value needs to be verified in large studies, though
    corecore