818 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThe goal of this dissertation is to improve flood risk management by enhancing the computational capability of two-dimensional models and incorporating data and parameter uncertainty to more accurately represent flood risk. Improvement of computational performance is accomplished by using the Graphics Processing Unit (GPU) approach, programmed in NVIDIA's Compute Unified Development Architecture (CUDA), to create a new two-dimensional hydrodynamic model, Flood2D-GPU. The model, based on the shallow water equations, is designed to execute simulations faster than the same code programmed using a serial approach (i.e., using a Central Processing Unit (CPU)). Testing the code against an identical CPU-based version demonstrated the improved computational efficiency of the GPU-based version (approximate speedup of more than 80 times). Given the substantial computational efficiency of Flood2D-GPU, a new Monte Carlo based flood risk modeling framework was created. The framework developed operates by performing many Flood2D-GPU simulations using randomly sampled model parameters and input variables. The Monte Carlo flood risk modeling framework is demonstrated in this dissertation by simulating the flood risk associated with a 1% annual probability flood event occurring in the Swannanoa River in Buncombe County near Asheville, North Carolina. The Monte Carlo approach is able to represent a wide range of possible scenarios, thus leading to the identification of areas outside a single simulation inundation extent that are susceptible to flood hazards. Further, the single simulation results underestimated the degree of flood hazard for the case study region when compared to the flood hazard map produced by the Monte Carlo approach. The Monte Carlo flood risk modeling framework is also used to determine the relative benefits of flood management alternatives for flood risk reduction. The objective of the analysis is to investigate the possibility of identifying specific annual exceedance probability flood events that will have greater benefits in terms of annualized flood risk reduction compared to an arbitrarily-selected discrete annual probability event. To test the hypothesis, a study was conducted on the Swannanoa River to determine the distribution of annualized risk as a function of average annual probability. Simulations of samples of flow rate from a continuous flow distribution provided the range of annual probability events necessary. The results showed a variation in annualized risk as a function of annual probability. And as hypothesized, a maximum annualized risk reduction could be identified for a specified annual probability. For the Swannanoa case study, the continuous flow distribution suggested targeting flood proofing to control the 12% exceedance probability event to maximize the reduction of annualized risk. This suggests that the arbitrary use of a specified risk of 1% exceedance may not in some cases be the most efficient allocation of resources to reduce annualized risk

    A CUDA Fortran GPU-parallelised hydrodynamic tool for high-resolution and long-term eco-hydraulic modelling

    Get PDF
    Eco-hydraulic models are wide extended tools to assess physical habitat suitability on aquatic environments. Currently, the application of these tools is limited to short river stretches and steady flow simulations. However, this limitation can be overcome with the application of a high-performance computing technique: graphics processing unit (GPU) computing. R-Iber is a GPU-based hydrodynamic code parallelised in CUDA Fortran that, with the integration of a physical habitat module, performs as an eco-hydraulic numerical tool. R-Iber was validated and applied to real cases by using an optimised instream flow incremental methodology in long river reaches and long-term simulations. R-Iber reduces the computation time considerably, reaching speed-ups of two orders of magnitude compared to traditional computing. R-Iber allows for overcoming the current limitations of the eco-hydraulic tools with the simulation of high-resolution numerical models calculated in a reasonable computation timeframe, which provides a better representation of the hydrodynamics and the physical habitat.The contract of the D.D.-S. is funded by the International Center for Numerical Methods in Engineering (VAC-2021-1).Peer ReviewedPostprint (published version

    Optimizing Two-dimensional Flood Model with SSE and Concurrent Processing

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive

    New prospects for computational hydraulics by leveraging high-performance heterogeneous computing techniques

    Get PDF
    In the last two decades, computational hydraulics has undergone a rapid development following the advancement of data acquisition and computing technologies. Using a finite-volume Godunov-type hydrodynamic model, this work demonstrates the promise of modern high-performance computing technology to achieve real-time flood modeling at a regional scale. The software is implemented for high-performance heterogeneous computing using the OpenCL programming framework, and developed to support simulations across multiple GPUs using a domain decomposition technique and across multiple systems through an efficient implementation of the Message Passing Interface (MPI) standard. The software is applied for a convective storm induced flood event in Newcastle upon Tyne, demonstrating high computational performance across a GPU cluster, and good agreement against crowd- sourced observations. Issues relating to data availability, complex urban topography and differences in drainage capacity affect results for a small number of areas

    Enable High-resolution, Real-time Ensemble Simulation and Data Assimilation of Flood Inundation using Distributed GPU Parallelization

    Full text link
    Numerical modeling of the intensity and evolution of flood events are affected by multiple sources of uncertainty such as precipitation and land surface conditions. To quantify and curb these uncertainties, an ensemble-based simulation and data assimilation model for pluvial flood inundation is constructed. The shallow water equation is decoupled in the x and y directions, and the inertial form of the Saint-Venant equation is chosen to realize fast computation. The probability distribution of the input and output factors is described using Monte Carlo samples. Subsequently, a particle filter is incorporated to enable the assimilation of hydrological observations and improve prediction accuracy. To achieve high-resolution, real-time ensemble simulation, heterogeneous computing technologies based on CUDA (compute unified device architecture) and a distributed storage multi-GPU (graphics processing unit) system are used. Multiple optimization skills are employed to ensure the parallel efficiency and scalability of the simulation program. Taking an urban area of Fuzhou, China as an example, a model with a 3-m spatial resolution and 4.0 million units is constructed, and 8 Tesla P100 GPUs are used for the parallel calculation of 96 model instances. Under these settings, the ensemble simulation of a 1-hour hydraulic process takes 2.0 minutes, which achieves a 2680 estimated speedup compared with a single-thread run on CPU. The calculation results indicate that the particle filter method effectively constrains simulation uncertainty while providing the confidence intervals of key hydrological elements such as streamflow, submerged area, and submerged water depth. The presented approaches show promising capabilities in handling the uncertainties in flood modeling as well as enhancing prediction efficiency

    Efficient reservoir modelling for flood regulation in the Ebro river (Spain)

    Get PDF
    The vast majority of reservoirs, although built for irrigation and water supply purposes, are also used as regulation tools during floods in river basins. Thus, the selection of the most suitable model when facing the simulation of a flood wave in a combination of river reach and reservoir is not direct and frequently some analysis of the proper system of equations and the number of solved flow velocity components is needed. In this work, a stretch of the Ebro River (Spain), which is the biggest river in Spain, is simulated solving the Shallow Water Equations (SWE). The simulation model covers the area of river between the city of Zaragoza and the Mequinenza dam. The domain encompasses 721.92 km2 with 221 km of river bed, of which the last 75 km belong to the Mequinenza reservoir. The results obtained from a one-dimensional (1D) model are validated comparing with those provided by a two-dimensional (2D) model based on the same numerical scheme and with measurements. The 1D modelling loses the detail of the floodplain, but nevertheless the computational consumption is much lower compared to the 2D model with a permissible loss of accuracy. Additionally, the particular nature of this reservoir might turn the 1D model into a more suitable option. An alternative technique is applied in order to model the reservoir globally by means of a volume balance (0D) model, coupled to the 1D model of the river (1D-0D model). The results obtained are similar to those provided by the full 1D model with an improvement on computational time. Finally, an automatic regulation is implemented by means of a Proportional-Integral-Derivative (PID) algorithm and tested in both the full 1D model and the 1D-0D model. The results show that the coupled model behaves correctly even when controlled by the automatic algorithm. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Flood risk in urban areas: modelling, management and adaptation to climate change. A review

    Get PDF
    [Abstract:] The modelling and management of flood risk in urban areas are increasingly recognized as global challenges. The complexity of these issues is a consequence of the existence of several distinct sources of risk, including not only fluvial, tidal and coastal flooding, but also exposure to urban runoff and local drainage failure, and the various management strategies that can be proposed. The high degree of vulnerability that characterizes such areas is expected to increase in the future due to the effects of climate change, the growth of the population living in cities, and urban densification. An increasing awareness of the socio-economic losses and environmental impact of urban flooding is clearly reflected in the recent expansion of the number of studies related to the modelling and management of urban flooding, sometimes within the framework of adaptation to climate change. The goal of the current paper is to provide a general review of the recent advances in flood-risk modelling and management, while also exploring future perspectives in these fields of research

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Flood-pedestrian simulator: an agent-based modelling framework for urban evacuation planning

    Get PDF
    Agent-Based Modelling (ABM) is an increasingly used approach for characterisation of human behaviour in evacuation simulation modelling. ABM-based evacuation models used in flood emergency are developed mostly for vehicular scenarios at regional scale. Only a few models exist for simulating evacuations of on-foot pedestrians responding to floods in small and congested urban areas. These models do not include the heterogeneity and variability of individuals’ behaviour influenced by their dynamic interactions with the floodwater properties. This limitation is due to the modelling restrictions pertaining to the computational complexity and the modelling flexibility for agent characterisation. This PhD research has aimed to develop a new ABM-based pedestrian evacuation model that overcomes these challenges through an ABM platform called Flexible Large-scale Agent Modelling Environment for the Graphics Processing Units (FLAME GPU). To achieve this aim, a hydrodynamic model has been integrated into a pedestrian model within the FLAME GPU framework. The dynamic interactions between the flood and pedestrians have been formulated based on a number of behavioural rules driving the mobility states and way-finding decisions of individuals in and around the floodwaters as well as the local changes in the floodwater properties as a result of pedestrians’ crowding. These rules have been progressively improved and their added value has been explored systematically by diagnostically comparing the simulation results obtained from the base setup and the augmented version of the model applied to a synthetic test case. A real-world case study has been further used to specifically evaluate the added value of rules relating the individuals’ way-finding mechanism to various levels of flood-risk perception. The findings from this research have shown that increasing the level of pedestrians’ heterogeneity and the effect of pedestrians’ crowding on the floodwater hydrodynamics yield to a considerably different prediction of flood risk and evacuation time. Besides, accounting for pedestrians’ various levels of flood-risk perception has been found to be one determinant factor in the analysis of flood risk and evacuation time when there are multiple destinations. Finally, the sensitivity analysis on the simulation results have shown that the deviations in the simulation outcomes increases in line with the increase in the sophistication of human behavioural rules
    • …
    corecore