5,996 research outputs found

    Advancing the Empirical Research on Lobbying

    Get PDF
    This essay identifies the empirical facts about lobbying which are generally agreed upon in the literature. It then discusses challenges to empirical research in lobbying and provides examples of empirical methods that can be employed to overcome these challenges—with an emphasis on statistical measurement, identification, and casual inference. The essay then discusses the advantages, disadvantages, and effective use of the main types of data available for research in lobbying. It closes by discussing a number of open questions for researchers in the field and avenues for future work to advance the empirical research in lobbying

    An Application of Gamma Generalized Linear Model for Estimation of Survival Function of Diabetic Nephropathy Patients

    Get PDF
    Diabetic nephropathy (DN) is a generic term referring to deleterious effect on renal structure and/or function caused by diabetes mellitus. World Health Organization estimates that diabetes affects more than 170 million people worldwide and this number may rise to 370 million by 2030. The rate of rise in Serum Creatinine (SrCr) is a well-accepted marker for the progression of Diabetic Nephropathy (DN). In this paper, survival functions of type 2 diabetic patients with renal complication are estimated. Firstly, most appropriate distribution for duration of diabetes is selected through minimum Akaike Information Criterion value, Gamma distribution is found to be an appropriate model. Secondly, the parameters estimates of the selected distribution are obtained by fitting a Generalized Linear Model (GLM), with duration of diabetes as the response variable and predictors as SrCr and number of successes (number of times SrCr values exceed its normal range (1.4 mg/dl)). These covariates are linked with the response variable using two different link functions namely log and reciprocal links. Using the estimates of parameters obtained from generalized linear regression analysis, survival functions for different durations under both the links are estimated. Further we compared the estimated survival functions under both the links with Kaplan Meier (KM) estimates graphically. Findings suggested that the Kaplan Meier estimate and Gamma distribution under both links provided a close estimate of survival functions. Median survival time is 16.3 years and 16.8 years obtained from KM method and Gamma GLM respectively

    Emulating the Human Mind: A Neural-symbolic Link Prediction Model with Fast and Slow Reasoning and Filtered Rules

    Full text link
    Link prediction is an important task in addressing the incompleteness problem of knowledge graphs (KG). Previous link prediction models suffer from issues related to either performance or explanatory capability. Furthermore, models that are capable of generating explanations, often struggle with erroneous paths or reasoning leading to the correct answer. To address these challenges, we introduce a novel Neural-Symbolic model named FaSt-FLiP (stands for Fast and Slow Thinking with Filtered rules for Link Prediction task), inspired by two distinct aspects of human cognition: "commonsense reasoning" and "thinking, fast and slow." Our objective is to combine a logical and neural model for enhanced link prediction. To tackle the challenge of dealing with incorrect paths or rules generated by the logical model, we propose a semi-supervised method to convert rules into sentences. These sentences are then subjected to assessment and removal of incorrect rules using an NLI (Natural Language Inference) model. Our approach to combining logical and neural models involves first obtaining answers from both the logical and neural models. These answers are subsequently unified using an Inference Engine module, which has been realized through both algorithmic implementation and a novel neural model architecture. To validate the efficacy of our model, we conducted a series of experiments. The results demonstrate the superior performance of our model in both link prediction metrics and the generation of more reliable explanations

    Evolutionary and pulsational properties of white dwarf stars

    Full text link
    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temperatures characterizing white dwarfs allow to use these stars as cosmic laboratories for studying physical processes under extreme conditions that cannot be achieved in terrestrial laboratories. They can be used to constrain fundamental properties of elementary particles such as axions and neutrinos, and to study problems related to the variation of fundamental constants. In this work, we review the essentials of the physics of white dwarf stars. Special emphasis is placed on the physical processes that lead to the formation of white dwarfs as well as on the different energy sources and processes responsible for chemical abundance changes that occur along their evolution. Moreover, in the course of their lives, white dwarfs cross different pulsational instability strips. The existence of these instability strips provides astronomers with an unique opportunity to peer into their internal structure that would otherwise remain hidden from observers. We will show that this allows to measure with unprecedented precision the stellar masses and to infer their envelope thicknesses, to probe the core chemical stratification, and to detect rotation rates and magnetic fields. Consequently, in this work, we also review the pulsational properties of white dwarfs and the most recent applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and Astrophysics Revie

    Cyber Threat Intelligence based Holistic Risk Quantification and Management

    Get PDF

    The propositional nature of human associative learning

    Get PDF
    The past 50 years have seen an accumulation of evidence suggesting that associative learning depends oil high-level cognitive processes that give rise to propositional knowledge. Yet, many learning theorists maintain a belief in a learning mechanism in which links between mental representations are formed automatically. We characterize and highlight the differences between the propositional and link approaches, and review the relevant empirical evidence. We conclude that learning is the consequence of propositional reasoning processes that cooperate with the unconscious processes involved in memory retrieval and perception. We argue that this new conceptual framework allows many of the important recent advances in associative learning research to be retained, but recast in a model that provides a firmer foundation for both immediate application and future research

    ISBIS 2016: Meeting on Statistics in Business and Industry

    Get PDF
    This Book includes the abstracts of the talks presented at the 2016 International Symposium on Business and Industrial Statistics, held at Barcelona, June 8-10, 2016, hosted at the Universitat Politècnica de Catalunya - Barcelona TECH, by the Department of Statistics and Operations Research. The location of the meeting was at ETSEIB Building (Escola Tecnica Superior d'Enginyeria Industrial) at Avda Diagonal 647. The meeting organizers celebrated the continued success of ISBIS and ENBIS society, and the meeting draw together the international community of statisticians, both academics and industry professionals, who share the goal of making statistics the foundation for decision making in business and related applications. The Scientific Program Committee was constituted by: David Banks, Duke University Amílcar Oliveira, DCeT - Universidade Aberta and CEAUL Teresa A. Oliveira, DCeT - Universidade Aberta and CEAUL Nalini Ravishankar, University of Connecticut Xavier Tort Martorell, Universitat Politécnica de Catalunya, Barcelona TECH Martina Vandebroek, KU Leuven Vincenzo Esposito Vinzi, ESSEC Business Schoo

    HETEROGENEOUS DATA AND PROBABILISTIC SYSTEM MODEL ANALYSES FOR ENHANCED SITUATIONAL AWARENESS AND RESILIENCE OF CRITICAL INFRASTRUCTURE SYSTEMS

    Get PDF
    The protection and resilience of critical infrastructure systems (CIS) are essential for public safety in daily operations and times of crisis and for community preparedness to hazard events. Increasing situational awareness and resilience of CIS includes both comprehensive monitoring of CIS and their surroundings, as well as evaluating CIS behaviors in changing conditions and with different system configurations. Two frameworks for increasing the monitoring capabilities of CIS are presented. The proposed frameworks are (1) a process for classifying social media big data for monitoring CIS and hazard events and (2) a framework for integrating heterogeneous data sources, including social media, using Bayesian inference to update prior probabilities of event occurrence. Applications of both frameworks are presented, including building and evaluating text-based machine learning classifiers for identifying CIS damages and integrating disparate data sources to estimate hazards and CIS damages. Probabilistic analyses of CIS vulnerabilities with varying system parameters and topologies are also presented. In a water network, the impact of varying parameters on component performance is evaluated. In multiple, small-size water networks, the impacts of system topology are assessed to identify characteristics of more resilient networks. This body of work contributes insights and methods for monitoring CIS and assessing their performance. Integrating heterogeneous data sources increases situational awareness of CIS, especially during or after failure events, and evaluating the sensitivity of CIS outcomes to changes in the network facilitates decisions for CIS investments and emergency response.Ph.D
    corecore