90 research outputs found

    Assessment of Cloud Screening with Apparent Surface Reflectance in Support of the ICESat-2 Mission

    Get PDF
    The separation of cloud and clear scenes is usually one of the first steps in satellite data analysis. Before deriving a geophysical product, almost every satellite mission requires a cloud mask to label a scene as either clear or cloudy through a cloud detection procedure. For clear scenes, products such as surface properties may be retrieved; for cloudy scenes, scientist can focus on studying the cloud properties. Hence the quality of cloud detection directly affects the quality of most satellite operational and research products. This is certainly true for the Ice, Cloud, and land Elevation Satellite-2 (lCESat-2), which is the successor to the ICESat-l. As a top priority mission, ICESat-2 will continue to provide measurements of ice sheets and sea ice elevation on a global scale. Studies have shown that clouds can significantly affect the accuracy of the retrieved results. For example, some of the photons (a photon is a basic unit of light) in the laser beam will be scattered by cloud particles on its way. So instead of traveling in a straight line, these photons are scattered sideways and have traveled a longer path. This will result in biases in ice sheet elevation measurements. Hence cloud screening must be done and be done accurately before the retrievals

    ICESat GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction

    Get PDF
    NASAs Ice, Cloud, and land Elevation Satellite (ICESat), which operated between 2003 and 2009, made the first satellite-based global lidar measurement of Earths ice sheet elevations, sea-ice thickness and vegetation canopy structure. The primary instrument on ICESat was the Geoscience Laser Altimeter System (GLAS), which measured the distance from the spacecraft to Earths surface via the roundtrip travel time of individual laser pulses. GLAS utilized pulsed lasers and a direct detection receiver consisting of a silicon avalanche photodiode (SiAPD) and a waveform digitizer. Early in the mission, the peak power of the received signal from snow and ice surfaces was found to span a wider dynamic range than planned, often exceeding the linear dynamic range of the GLAS 1064-nm detector assembly. The resulting saturation of the receiver distorted the recorded signal and resulted in range biases as large as 50 cm for ice and snow-covered surfaces. We developed a correction for this saturation range bias based on laboratory tests using a spare flight detector, and refined the correction by comparing GLAS elevation estimates to those derived from Global Positioning System (GPS) surveys over the calibration site at the salar de Uyuni, Bolivia. Applying the saturation correction largely eliminated the range bias due to receiver saturation for affected ICESat measurements over Uyuni and significantly reduced the discrepancies at orbit crossovers located on flat regions of the Antarctic ice sheet

    Laser Pulse Bidirectional Reflectance from CALIPSO Mission

    Get PDF
    This paper presents an innovative retrieval method that translate the CALIOP land surface laser pulse returns into the surface bidirectional reflectance. To better analyze the surface returns, the CALIOP receiver impulse response and the downlinked samples distribution at 30 m resolution are discussed. The saturated laser pulse returns from snow and ice surfaces are recovered based on surface tail information. The retrieved snow surface bidirectional reflectance is compared with reflectance from both CALIOP cloud cover regions and MODIS BRDF/Albedo model parameters. Besides the surface bidirectional reflectance, the column top-of-atmosphere bidirectional reflectance is calculated from the CALIOP lidar background data. It is compared with bidirectional reflectance from WFC radiance measurements. The retrieved CALIOP surface bidirectional reflectance and column top-of-atmosphere bidirectional reflectance results provide unique information to complement existing MODIS standard data products and would have valuable applications for modellers

    Radiometric Assessment of ICESat-2 over Vegetated Surfaces

    Get PDF
    The ice, cloud, and land elevation satellite-2 (ICESat-2) is providing global elevation measurements to the science community. ICESat-2 measures the height of the Earth’s surface using a photon counting laser altimeter, ATLAS (advanced topographic laser altimetry system). As a photon counting system, the number of reflected photons per shot, or radiometry, is a function primarily of the transmitted laser energy, solar elevation, surface reflectance, and atmospheric scattering and attenuation. In this paper, we explore the relationship between detected scattering and attenuation in the atmosphere against the observed radiometry for three general forest types, as well as the radiometry as a function of day versus night. Through this analysis, we found that ATLAS strong beam radiometry exceeds the pre-launch design cases for boreal and tropical forests but underestimates the predicted radiometry over temperate forests by approximately half a photon. The weak beams, in contrast, exceed all pre-launch conditions by a factor of two to six over all forest types. We also observe that the signal radiometry from day acquisitions is lower than night acquisitions by 10% and 40% for the strong and weak beams, respectively. This research also found that the detection ratio between each beam-pair was lower than the predicted 4:1 values. This research also presents the concept of ICESat-2 radiometric profiles; these profiles provide a path for calculating vegetation structure. The results from this study are intended to be informative and perhaps serve as a benchmark for filtering or analysis of the ATL08 data products over vegetated surfaces

    Radiometric calibration of a non-imaging airborne spectrometer to measure the Greenland ice sheet surface

    Get PDF
    Methods to radiometrically calibrate a non-imaging airborne visible-to-shortwave infrared (VSWIR) spectrometer to measure the Greenland ice sheet surface are presented. Airborne VSWIR measurement performance for bright Greenland ice and dark bare rock/soil targets is compared against the MODerate resolution atmospheric TRANsmission (MODTRAN®) radiative transfer code (version 6.0), and a coincident Landsat 8 Operational Land Imager (OLI) acquisition on 29 July 2015 during an in-flight radiometric calibration experiment. Airborne remote sensing flights were carried out in northwestern Greenland in preparation for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) laser altimeter mission. A total of nine science flights were conducted over the Greenland ice sheet, sea ice, and open-ocean water. The campaign's primary purpose was to correlate green laser pulse penetration into snow and ice with spectroscopic-derived surface properties. An experimental airborne instrument configuration that included a nadir-viewing (looking downward at the surface) non-imaging Analytical Spectral Devices (ASD) Inc. spectrometer that measured upwelling VSWIR (0.35 to 2.5&thinsp;µm) spectral radiance (Wm-2sr-1µm-1) in the two-color Slope Imaging Multi-polarization Photon-Counting Lidar's (SIMPL) ground instantaneous field of view, and a zenith-viewing (looking upward at the sky) ASD spectrometer that measured VSWIR spectral irradiance (W&thinsp;m−2&thinsp;nm−1) was flown. National Institute of Standards and Technology (NIST) traceable radiometric calibration procedures for laboratory, in-flight, and field environments are described in detail to achieve a targeted VSWIR measurement requirement of within 5&thinsp;% to support calibration/validation efforts and remote sensing algorithm development. Our MODTRAN predictions for the 29 July flight line over dark and bright targets indicate that the airborne nadir-viewing spectrometer spectral radiance measurement uncertainty was between 0.6&thinsp;% and 4.7&thinsp;% for VSWIR wavelengths (0.4 to 2.0&thinsp;µm) with atmospheric transmittance greater than 80&thinsp;%. MODTRAN predictions for Landsat 8 OLI relative spectral response functions suggest that OLI is measuring 6&thinsp;% to 16&thinsp;% more top-of-atmosphere (TOA) spectral radiance from the Greenland ice sheet surface than was predicted using apparent reflectance spectra from the nadir-viewing spectrometer. While more investigation is required to convert airborne VSWIR spectral radiance into atmospherically corrected airborne surface reflectance, it is expected that airborne science flight data products will contribute to spectroscopic determination of Greenland ice sheet surface optical properties to improve understanding of their potential influence on ICESat-2 measurements.</p

    Remote Sensing of Biophysical Parameters

    Get PDF
    Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security)

    THE UNCERTAINTY OF SPACEBORNE OBSERVATION OF VEGETATION STRUCTURE IN THE TAIGA-TUNDRA ECOTONE: A CASE STUDY IN NORTHERN SIBERIA

    Get PDF
    The ability to characterize vegetation structure in the taiga-tundra ecotone (TTE) at fine spatial scales is critical given its heterogeneity and the central role of its patterns on ecological processes in the high northern latitudes and global change scenarios. This research focuses on quantifying the uncertainty of TTE forest structure observations from remote sensing at fine spatial scales. I first quantify the uncertainty of forest biomass estimates from current airborne and spaceborne active remote sensing systems and a planned spaceborne LiDAR (ICESat-2) across sparse forest gradients. At plot-scales, current spaceborne models of biomass either explain less than a third of model variation or have biomass estimate uncertainties ranging from 50-100%. Simulations of returns from the planned ICESat-2 for a similar gradient show the uncertainty of near-term estimates vary according to the ground length along which returns are collected. The 50m length optimized the resolution of forest structure, for which there is a trade-off between horizontal precision of the measurement and vertical structure detail. At this scale biomass error ranges from 20-50%, which precludes identifying actual differences in aboveground live biomass density at 10 Mg•ha-1 intervals. These broad plot-scale uncertainties in structure from current and planned sensors provided the basis for examining a data integration technique with multiple sensors to measure the structure of sparse TTE forests. Spaceborne estimates of canopy height used complementary surface elevation measurements from passive optical and LiDAR to provide a means for directly measuring TTE forest height from spaceborne sensors. This spaceborne approach to estimating forest height was deployed to assess the spaceborne potential for examining the patterns of TTE forest structure explained with a conceptual biogeographic model linking TTE patterns and its dynamics. A patch-based analysis was used to scale estimates of TTE forest structure from multiple sensors and provided a means to simultaneously examine the horizontal and vertical structure of groups of TTE trees. The uncertainty of forest patch height estimates provides focus for improving spaceborne depictions of TTE structure patterns associated with recent change that may explain the variability of this change and the vulnerability of TTE forest structure

    Improved estimates of vegetation and terrain parameters from waveform LiDAR.

    Get PDF
    Light Detection And Ranging (LiDAR) technologies have evolved rapidly over the last decade, contributing to our knowledge of the Earth's surface evolution from local to global scales. A relatively young form of LiDAR is continuous waveform, which has not yet been fully exploited. The current research investigates and develops new methods, highlighting the potential and possible pitfalls of working with continuous waveform LiDAR. The first piece of research investigates the effects of shadowing in LiDAR waveforms in physically observed, large footprint LiDAR waveforms, based on previous works noting shadowing effects in radiative transfer models, and in a controlled environment experiment. For this investigation airborne LiDAR derived digital elevation models were employed in conjunction with spatially corresponding waveform returns to identify possible shadowing effects. It was found that shadows occur more frequently over more severely sloped terrain, affecting the accuracy of waveform derived vegetation parameters. The implications of shadows in waveform data are also discussed. The second piece of research develops and tests two methods, the Slope Screening Model and Independent Slope Model, such to determine ground slope information from LiDAR waveforms. Both methods were validated against discrete return airborne LiDAR data, and British Ordnance Survey data, such to identify winch method is most suited to retrieving slope. The third piece of research utilises the favoured method for slope prediction from the second r(\searc4i topic to correct vegetation height estimates for slope. Two methods (Lox' and modified) are investigated and tested, and validated against airborne LiDAR equivalent results at the regional scale, and against normalised difference vegetation index at the near global scale. Both correction methods produced statistically significant differences in mean global vegetation heights with regards to a control dataset
    • …
    corecore