220 research outputs found

    Reversed Active Learning based Atrous DenseNet for Pathological Image Classification

    Full text link
    Witnessed the development of deep learning in recent years, increasing number of researches try to adopt deep learning model for medical image analysis. However, the usage of deep learning networks for the pathological image analysis encounters several challenges, e.g. high resolution (gigapixel) of pathological images and lack of annotations of cancer areas. To address the challenges, we proposed a complete framework for the pathological image classification, which consists of a novel training strategy, namely reversed active learning (RAL), and an advanced network, namely atrous DenseNet (ADN). The proposed RAL can remove the mislabel patches in the training set. The refined training set can then be used to train widely used deep learning networks, e.g. VGG-16, ResNets, etc. A novel deep learning network, i.e. atrous DenseNet (ADN), is also proposed for the classification of pathological images. The proposed ADN achieves multi-scale feature extraction by integrating the atrous convolutions to the Dense Block. The proposed RAL and ADN have been evaluated on two pathological datasets, i.e. BACH and CCG. The experimental results demonstrate the excellent performance of the proposed ADN + RAL framework, i.e. the average patch-level ACAs of 94.10% and 92.05% on BACH and CCG validation sets were achieved

    Fast ScanNet : fast and dense analysis of multi-gigapixel whole-slide images for cancer metastasis detection

    Get PDF
    Lymph node metastasis is one of the most important indicators in breast cancer diagnosis, that is traditionally observed under the microscope by pathologists. In recent years, with the dramatic advance of high-throughput scanning and deep learning technology, automatic analysis of histology from whole- slide images has received a wealth of interest in the field of medical image computing, which aims to alleviate pathologists’ workload and simultaneously reduce misdiagnosis rate. However, automatic detection of lymph node metastases from whole-slide images remains a key challenge because such images are typically very large, where they can often be multiple gigabytes in size. Also, the presence of hard mimics may result in a large number of false positives. In this paper, we propose a novel method with anchor layers for model conversion, which not only leverages the efficiency of fully convolutional architectures to meet the speed requirement in clinical practice, but also densely scans the whole- slide image to achieve accurate predictions on both micro- and macro-metastases. Incorporating the strategies of asynchronous sample prefetching and hard negative mining, the network can be effectively trained. The efficacy of our method are corroborated on the benchmark dataset of 2016 Camelyon Grand Challenge. Our method achieved significant improvements in comparison with the state-of-the-art methods on tumour localization accuracy with a much faster speed and even surpassed human performance on both challenge tasks

    Methods for Segmentation and Classification of Digital Microscopy Tissue Images

    Full text link
    High-resolution microscopy images of tissue specimens provide detailed information about the morphology of normal and diseased tissue. Image analysis of tissue morphology can help cancer researchers develop a better understanding of cancer biology. Segmentation of nuclei and classification of tissue images are two common tasks in tissue image analysis. Development of accurate and efficient algorithms for these tasks is a challenging problem because of the complexity of tissue morphology and tumor heterogeneity. In this paper we present two computer algorithms; one designed for segmentation of nuclei and the other for classification of whole slide tissue images. The segmentation algorithm implements a multiscale deep residual aggregation network to accurately segment nuclear material and then separate clumped nuclei into individual nuclei. The classification algorithm initially carries out patch-level classification via a deep learning method, then patch-level statistical and morphological features are used as input to a random forest regression model for whole slide image classification. The segmentation and classification algorithms were evaluated in the MICCAI 2017 Digital Pathology challenge. The segmentation algorithm achieved an accuracy score of 0.78. The classification algorithm achieved an accuracy score of 0.81

    Rotation Equivariant CNNs for Digital Pathology

    Full text link
    We propose a new model for digital pathology segmentation, based on the observation that histopathology images are inherently symmetric under rotation and reflection. Utilizing recent findings on rotation equivariant CNNs, the proposed model leverages these symmetries in a principled manner. We present a visual analysis showing improved stability on predictions, and demonstrate that exploiting rotation equivariance significantly improves tumor detection performance on a challenging lymph node metastases dataset. We further present a novel derived dataset to enable principled comparison of machine learning models, in combination with an initial benchmark. Through this dataset, the task of histopathology diagnosis becomes accessible as a challenging benchmark for fundamental machine learning research.Comment: To be presented at MICCAI 2018. Implementations of equivariant layers available at https://github.com/basveeling/keras_gcnn . PCam details and data at https://github.com/basveeling/pca

    Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology Images

    Full text link
    Histology images are inherently symmetric under rotation, where each orientation is equally as likely to appear. However, this rotational symmetry is not widely utilised as prior knowledge in modern Convolutional Neural Networks (CNNs), resulting in data hungry models that learn independent features at each orientation. Allowing CNNs to be rotation-equivariant removes the necessity to learn this set of transformations from the data and instead frees up model capacity, allowing more discriminative features to be learned. This reduction in the number of required parameters also reduces the risk of overfitting. In this paper, we propose Dense Steerable Filter CNNs (DSF-CNNs) that use group convolutions with multiple rotated copies of each filter in a densely connected framework. Each filter is defined as a linear combination of steerable basis filters, enabling exact rotation and decreasing the number of trainable parameters compared to standard filters. We also provide the first in-depth comparison of different rotation-equivariant CNNs for histology image analysis and demonstrate the advantage of encoding rotational symmetry into modern architectures. We show that DSF-CNNs achieve state-of-the-art performance, with significantly fewer parameters, when applied to three different tasks in the area of computational pathology: breast tumour classification, colon gland segmentation and multi-tissue nuclear segmentation

    BACH: Grand Challenge on Breast Cancer Histology Images

    Full text link
    Breast cancer is the most common invasive cancer in women, affecting more than 10% of women worldwide. Microscopic analysis of a biopsy remains one of the most important methods to diagnose the type of breast cancer. This requires specialized analysis by pathologists, in a task that i) is highly time- and cost-consuming and ii) often leads to nonconsensual results. The relevance and potential of automatic classification algorithms using hematoxylin-eosin stained histopathological images has already been demonstrated, but the reported results are still sub-optimal for clinical use. With the goal of advancing the state-of-the-art in automatic classification, the Grand Challenge on BreAst Cancer Histology images (BACH) was organized in conjunction with the 15th International Conference on Image Analysis and Recognition (ICIAR 2018). A large annotated dataset, composed of both microscopy and whole-slide images, was specifically compiled and made publicly available for the BACH challenge. Following a positive response from the scientific community, a total of 64 submissions, out of 677 registrations, effectively entered the competition. From the submitted algorithms it was possible to push forward the state-of-the-art in terms of accuracy (87%) in automatic classification of breast cancer with histopathological images. Convolutional neuronal networks were the most successful methodology in the BACH challenge. Detailed analysis of the collective results allowed the identification of remaining challenges in the field and recommendations for future developments. The BACH dataset remains publically available as to promote further improvements to the field of automatic classification in digital pathology.Comment: Accepted for publication at Medical Image Analysis (Elsevier). Publication licensed under the Creative Commons CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0

    A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains

    Full text link
    Recently proposed methods for weakly-supervised semantic segmentation have achieved impressive performance in predicting pixel classes despite being trained with only image labels which lack positional information. Because image annotations are cheaper and quicker to generate, weak supervision is more practical than full supervision for training segmentation algorithms. These methods have been predominantly developed to solve the background separation and partial segmentation problems presented by natural scene images and it is unclear whether they can be simply transferred to other domains with different characteristics, such as histopathology and satellite images, and still perform well. This paper evaluates state-of-the-art weakly-supervised semantic segmentation methods on natural scene, histopathology, and satellite image datasets and analyzes how to determine which method is most suitable for a given dataset. Our experiments indicate that histopathology and satellite images present a different set of problems for weakly-supervised semantic segmentation than natural scene images, such as ambiguous boundaries and class co-occurrence. Methods perform well for datasets they were developed on, but tend to perform poorly on other datasets. We present some practical techniques for these methods on unseen datasets and argue that more work is needed for a generalizable approach to weakly-supervised semantic segmentation. Our full code implementation is available on GitHub: https://github.com/lyndonchan/wsss-analysis.Comment: 23 pages; submitted to International Journal of Computer Vision (IJCV). Associated code available at https://github.com/lyndonchan/wsss-analysis. To view Supplementary Materials, please download pdf file listed under "Ancillary files

    Dense steerable filter CNNs for exploiting rotational symmetry in histology images

    Get PDF
    Histology images are inherently symmetric under rotation, where each orientation is equally as likely to appear. However, this rotational symmetry is not widely utilised as prior knowledge in modern Convolutional Neural Networks (CNNs), resulting in data hungry models that learn independent features at each orientation. Allowing CNNs to be rotation-equivariant removes the necessity to learn this set of transformations from the data and instead frees up model capacity, allowing more discriminative features to be learned. This reduction in the number of required parameters also reduces the risk of overfitting. In this paper, we propose Dense Steerable Filter CNNs (DSF-CNNs) that use group convolutions with multiple rotated copies of each filter in a densely connected framework. Each filter is defined as a linear combination of steerable basis filters, enabling exact rotation and decreasing the number of trainable parameters compared to standard filters. We also provide the first in-depth comparison of different rotation-equivariant CNNs for histology image analysis and demonstrate the advantage of encoding rotational symmetry into modern architectures. We show that DSF-CNNs achieve state-of-the-art performance, with significantly fewer parameters, when applied to three different tasks in the area of computational pathology: breast tumour classification, colon gland segmentation and multi-tissue nuclear segmentation

    Context-Aware Convolutional Neural Network for Grading of Colorectal Cancer Histology Images

    Full text link
    Digital histology images are amenable to the application of convolutional neural network (CNN) for analysis due to the sheer size of pixel data present in them. CNNs are generally used for representation learning from small image patches (e.g. 224x224) extracted from digital histology images due to computational and memory constraints. However, this approach does not incorporate high-resolution contextual information in histology images. We propose a novel way to incorporate larger context by a context-aware neural network based on images with a dimension of 1,792x1,792 pixels. The proposed framework first encodes the local representation of a histology image into high dimensional features then aggregates the features by considering their spatial organization to make a final prediction. The proposed method is evaluated for colorectal cancer grading and breast cancer classification. A comprehensive analysis of some variants of the proposed method is presented. Our method outperformed the traditional patch-based approaches, problem-specific methods, and existing context-based methods quantitatively by a margin of 3.61%. Code and dataset related information is available at this link: https://tia-lab.github.io/Context-Aware-CNNComment: 10 pages, 4 figures, Supplementary Documen

    A Comprehensive Review for Breast Histopathology Image Analysis Using Classical and Deep Neural Networks

    Full text link
    Breast cancer is one of the most common and deadliest cancers among women. Since histopathological images contain sufficient phenotypic information, they play an indispensable role in the diagnosis and treatment of breast cancers. To improve the accuracy and objectivity of Breast Histopathological Image Analysis (BHIA), Artificial Neural Network (ANN) approaches are widely used in the segmentation and classification tasks of breast histopathological images. In this review, we present a comprehensive overview of the BHIA techniques based on ANNs. First of all, we categorize the BHIA systems into classical and deep neural networks for in-depth investigation. Then, the relevant studies based on BHIA systems are presented. After that, we analyze the existing models to discover the most suitable algorithms. Finally, publicly accessible datasets, along with their download links, are provided for the convenience of future researchers.Comment: 25 pages,19 figure
    corecore