76 research outputs found

    From Concept to Market: Surgical Robot Development

    Get PDF
    Surgical robotics and supporting technologies have really become a prime example of modern applied information technology infiltrating our everyday lives. The development of these systems spans across four decades, and only the last few years brought the market value and saw the rising customer base imagined already by the early developers. This chapter guides through the historical development of the most important systems, and provide references and lessons learnt for current engineers facing similar challenges. A special emphasis is put on system validation, assessment and clearance, as the most commonly cited barrier hindering the wider deployment of a system

    Life Expansion: Toward an Artistic, Design-Based Theory of the Transhuman / Posthuman

    Get PDF
    The thesis’ study of life expansion proposes a framework for artistic, design-based approaches concerned with prolonging human life and sustaining personal identity. To delineate the topic: life expansion means increasing the length of time a person is alive and diversifying the matter in which a person exists. For human life, the length of time is bounded by a single century and its matter is tied to biology. Life expansion is located in the domain of human enhancement, distinctly linked to technological interfaces with biology. The thesis identifies human-computer interaction and the potential of emerging and speculative technologies as seeding the promulgation of human enhancement that approach life expansion. In doing so, the thesis constructs an inquiry into historical and current attempts to append human physiology and intervene with its mortality. By encountering emerging and speculative technologies for prolonging life and sustaining personal identity as possible media for artistic, design-based approaches to human enhancement, a new axis is sought that identifies the transhuman and posthuman as conceptual paradigms for life expansion. The thesis asks: What are the required conditions that enable artistic, design-based approaches to human enhancement that explicitly pursue extending human life? This question centers on the potential of the study’s proposed enhancement technologies in their relationship to life, death, and the human condition. Notably, the thesis investigates artistic approaches, as distinct from those of the natural sciences, and the borders that need to be mediated between them. The study navigates between the domains of life extension, art and design, technology, and philosophy in forming the framework for a theory of life expansion. The critical approach seeks to uncover invisible borders between these interconnecting forces by bringing to light issues of sustaining life and personal identity, ethical concerns, including morphological freedom and extinction risk. Such issues relate to the thesis’ interest in life expansion and the use emerging and speculative technologies. 4 The study takes on a triad approach in its investigation: qualitative interviews with experts of the emerging and speculative technologies; field studies encountering research centers of such technologies; and an artistic, autopoietic process that explores the heuristics of life expansion. This investigation forms an integrative view of the human use of technology and its melioristic aim. The outcome of the research is a theoretical framework for further research in artistic approaches to life expansion

    Human Brain/Cloud Interface

    Get PDF
    The Internet comprises a decentralized global system that serves humanity’s collective effort to generate, process, and store data, most of which is handled by the rapidly expanding cloud. A stable, secure, real-time system may allow for interfacing the cloud with the human brain. One promising strategy for enabling such a system, denoted here as a “human brain/cloud interface” (“B/CI”), would be based on technologies referred to here as “neuralnanorobotics.” Future neuralnanorobotics technologies are anticipated to facilitate accurate diagnoses and eventual cures for the ∌400 conditions that affect the human brain. Neuralnanorobotics may also enable a B/CI with controlled connectivity between neural activity and external data storage and processing, via the direct monitoring of the brain’s ∌86 × 109 neurons and ∌2 × 1014 synapses. Subsequent to navigating the human vasculature, three species of neuralnanorobots (endoneurobots, gliabots, and synaptobots) could traverse the blood–brain barrier (BBB), enter the brain parenchyma, ingress into individual human brain cells, and autoposition themselves at the axon initial segments of neurons (endoneurobots), within glial cells (gliabots), and in intimate proximity to synapses (synaptobots). They would then wirelessly transmit up to ∌6 × 1016 bits per second of synaptically processed and encoded human–brain electrical information via auxiliary nanorobotic fiber optics (30 cm3) with the capacity to handle up to 1018 bits/sec and provide rapid data transfer to a cloud based supercomputer for real-time brain-state monitoring and data extraction. A neuralnanorobotically enabled human B/CI might serve as a personalized conduit, allowing persons to obtain direct, instantaneous access to virtually any facet of cumulative human knowledge. Other anticipated applications include myriad opportunities to improve education, intelligence, entertainment, traveling, and other interactive experiences. A specialized application might be the capacity to engage in fully immersive experiential/sensory experiences, including what is referred to here as “transparent shadowing” (TS). Through TS, individuals might experience episodic segments of the lives of other willing participants (locally or remote) to, hopefully, encourage and inspire improved understanding and tolerance among all members of the human family

    Multi Agent Systems

    Get PDF
    Research on multi-agent systems is enlarging our future technical capabilities as humans and as an intelligent society. During recent years many effective applications have been implemented and are part of our daily life. These applications have agent-based models and methods as an important ingredient. Markets, finance world, robotics, medical technology, social negotiation, video games, big-data science, etc. are some of the branches where the knowledge gained through multi-agent simulations is necessary and where new software engineering tools are continuously created and tested in order to reach an effective technology transfer to impact our lives. This book brings together researchers working in several fields that cover the techniques, the challenges and the applications of multi-agent systems in a wide variety of aspects related to learning algorithms for different devices such as vehicles, robots and drones, computational optimization to reach a more efficient energy distribution in power grids and the use of social networks and decision strategies applied to the smart learning and education environments in emergent countries. We hope that this book can be useful and become a guide or reference to an audience interested in the developments and applications of multi-agent systems

    Evolution: From Big Bang to Nanorobots

    Full text link
    The present volume is the fourth issue of the Yearbook series entitled ‘Evolution’. The title of the present volume is ‘From Big Bang to Nanorobots’. In this way we demonstrate that all phases of evolution and Big History are covered in the articles of the present Yearbook. Several articles also present the forecasts about future development. The main objective of our Yearbook as well as of the previous issues is the creation of a unified interdisciplinary field of research in which the scientists specializing in different disciplines could work within the framework of unified or similar paradigms, using the common terminology and searching for common rules, tendencies and regularities. At the same time for the formation of such an integrated field one should use all available opportunities: theories, laws and methods. In the present volume, a number of such approaches are used

    Evolution: From Big Bang to Nanorobots

    Full text link
    The present volume is the fourth issue of the Yearbook series entitled ‘Evolution’. The title of the present volume is ‘From Big Bang to Nanorobots’. In this way we demonstrate that all phases of evolution and Big History are covered in the articles of the present Yearbook. Several articles also present the forecasts about future development. The main objective of our Yearbook as well as of the previous issues is the creation of a unified interdisciplinary field of research in which the scientists specializing in different disciplines could work within the framework of unified or similar paradigms, using the common terminology and searching for common rules, tendencies and regularities. At the same time for the formation of such an integrated field one should use all available opportunities: theories, laws and methods. In the present volume, a number of such approaches are used

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    Using the Fringe Field of MRI Scanner for the Navigation of Microguidewires in the Vascular System

    Get PDF
    Le traitement du cancer, la prĂ©vention des accidents vasculaires cĂ©rĂ©braux et le diagnostic ou le traitement des maladies vasculaires pĂ©riphĂ©riques sont tous des cas d'application d'interventions Ă  base de cathĂ©ter par le biais d'un traitement invasif minimal. Cependant, la pratique du cathĂ©tĂ©risme est gĂ©nĂ©ralement pratiquĂ©e manuellement et dĂ©pend fortement de l'expĂ©rience et des compĂ©tences de l'interventionniste. La robotisation du cathĂ©tĂ©risme a Ă©tĂ© Ă©tudiĂ©e pour faciliter la procĂ©dure en augmentant les niveaux d’autonomie par rapport Ă  cette pratique clinique. En ce qui concerne ce problĂšme, un des problĂšmes concerne le placement super sĂ©lectif du cathĂ©ter dans les artĂšres plus Ă©troites nĂ©cessitant une miniaturisation de l'instrument cathĂ©ter / fil de guidage attachĂ©. Un microguide qui fonctionne dans des vaisseaux sanguins Ă©troits et tortueux subit diffĂ©rentes forces mĂ©caniques telles que le frottement avec la paroi du vaisseau. Ces forces peuvent empĂȘcher la progression de la pointe du fil de guidage dans les vaisseaux. Une mĂ©thode proposĂ©e consiste Ă  appliquer une force de traction Ă  la pointe du microguide pour diriger et insĂ©rer le dispositif tout en poussant l’instrument attachĂ© Ă  partir de l’autre extrĂ©mitĂ© n’est plus pratique, et Ă  exploiter le gradient du champ de franges IRM surnommĂ© Fringe Field Navigation (FFN ) est proposĂ©e comme solution pour assurer cet actionnement. Le concept de FFN repose sur le positionnement d'un patient sur six DOF dans le champ pĂ©riphĂ©rique du scanner IRM afin de permettre un actionnement directionnel pour la navigation du fil-guide. Ce travail rend compte des dĂ©veloppements requis pour la mise en oeuvre de la FFN et l’étude du potentiel et des possibilitĂ©s qu’elle offre au cathĂ©tĂ©risme, en veillant au renforcement de l’autonomie. La cartographie du champ de franges d'un scanner IRM 3T est effectuĂ©e et la structure du champ de franges en ce qui concerne son uniformitĂ© locale est examinĂ©e. Une mĂ©thode pour la navigation d'un fil de guidage le long d'un chemin vasculaire souhaitĂ© basĂ©e sur le positionnement robotique du patient Ă  six DOF est dĂ©veloppĂ©e. Des expĂ©riences de FFN guidĂ©es par rayons X in vitro et in vivo sur un modĂšle porcin sont effectuĂ©es pour naviguer dans un fil de guidage dans la multibifurcation et les vaisseaux Ă©troits. Une caractĂ©ristique unique de FFN est le haut gradient du champ magnĂ©tique. Il est dĂ©montrĂ© in vitro et in vivo que cette force surmonte le problĂšme de l'insertion d'un fil microguide dans des vaisseaux tortueux et Ă©troits pour permettre de faire avancer le fil-guide avec une distale douce au-delĂ  de la limite d'insertion manuelle. La robustesse de FFN contre les erreurs de positionnement du patient est Ă©tudiĂ©e en relation avec l'uniformitĂ© locale dans le champ pĂ©riphĂ©rique. La force Ă©levĂ©e du champ magnĂ©tique disponible dans le champ de franges IRM peut amener les matĂ©riaux magnĂ©tiques doux Ă  son Ă©tat de saturation. Ici, le concept d'utilisation d'un ressort est prĂ©sentĂ© comme une alternative vi dĂ©formable aux aimants permanents solides pour la pointe du fil-guide. La navigation d'un microguide avec une pointe de ressort en structure vasculaire complexe est Ă©galement rĂ©alisĂ©e in vitro. L'autonomie de FFN en ce qui concerne la planification d'une procĂ©dure avec autonomie de tĂąche obtenue dans ce travail augmente le potentiel de FFN en automatisant certaines Ă©tapes d'une procĂ©dure. En conclusion, FFN pour naviguer dans les microguides dans la structure vasculaire complexe avec autonomie pour effectuer le positionnement du patient et contrĂŽler l'insertion du fil de guidage - avec dĂ©monstration in vivo dans un modĂšle porcin - peut ĂȘtre considĂ©rĂ© comme un nouvel outil robotique facilitant le cathĂ©tĂ©risme vasculaire. tout en aidant Ă  cibler les vaisseaux lointains dans le systĂšme vasculaire.----------ABSTRACT Treatment of cancer, prevention of stroke, and diagnosis or treatment of peripheral vascular diseases are all the cases of application of catheter-based interventions through a minimal-invasive treatment. However, performing catheterization is generally practiced manually, and it highly depends on the experience and the skills of the interventionist. Robotization of catheterization has been investigated to facilitate the procedure by increasing the levels of autonomy to this clinical practice. Regarding it, one issue is the super selective placement of the catheter in the narrower arteries that require miniaturization of the tethered catheter/guidewire instrument. A microguidewire that operates in narrow and tortuous blood vessels experiences different mechanical forces like friction with the vessel wall. These forces can prevent the advancement of the tip of the guidewire in the vessels. A proposed method is applying a pulling force at the tip of the microguidewire to steer and insert the device while pushing the tethered instrument from the other end is no longer practical, and exploiting the gradient of the MRI fringe field dubbed as Fringe Field Navigation (FFN) is proposed as a solution to provide this actuation. The concept of FFN is based on six DOF positioning of a patient in the fringe field of the MRI scanner to enable directional actuation for the navigation of the guidewire. This work reports on the required developments for implementing FFN and investigating the potential and the possibilities that FFN introduces to the catheterization, with attention to enhancing the autonomy. Mapping the fringe field of a 3T MRI scanner is performed, and the structure of the fringe field regarding its local uniformity is investigated. A method for the navigation of a guidewire along a desired vascular path based on six DOF robotic patient positioning is developed. In vitro and in vivo x-ray Guided FFN experiments on a swine model of are performed to navigate a guidewire in the multibifurcation and narrow vessels. A unique feature of FFN is the high gradient of the magnetic field. It is demonstrated in vitro and in vivo that this force overcomes the issue of insertion of a microguidewire in tortuous and narrow vessels to enable advancing the guidewire with a soft distal beyond the limit of manual insertion. Robustness of FFN against the error in the positioning of the patient is investigated in relation to the local uniformity in the fringe field. The high strength of the magnetic field available in MRI fringe field can bring soft magnetic materials to its saturation state. Here, the concept of using a spring is introduced as a deformable alternative to solid permanent magnets for the tip of the guidewire. Navigation of a microguidewire with a viii spring tip in complex vascular structure is also performed in vitro. The autonomy of FFN regarding planning a procedure with Task Autonomy achieved in this work enhances the potential of FFN by automatization of certain steps of a procedure. As a conclusion, FFN to navigate microguidewires in the complex vascular structure with autonomy in performing tasks of patient positioning and controlling the insertion of the guidewire – with in vivo demonstration in swine model – can be considered as a novel robotic tool for facilitating the vascular catheterization while helping to target remote vessels in the vascular system

    Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations

    Full text link
    Physically or externally stimulated nanostructures often employ multimodality and show encouraging results at preclinical stage in cancer therapy. Specially designed smart nanostructures such as hybrid nanostructures are responsive to external physical stimuli such as light, magnetic field, electric, ultrasound, radio frequency, X-ray, etc. These physically responsive nanostructures have been widely explored as nonconventional innovative “nanotheranostics” in cancer therapies. Physically stimulated (particularly magnetic and light) nanotheranostics provide a unique combination of important properties to address key challenges in modern cancer therapy: (i) an active tumor targeting mechanism of therapeutic drugs driven by a physical force rather than passive antibody matching, (ii) an externally/remotely controlled drugs on-demand release mechanism, and (iii) a capability for advanced image guided tumor therapy and therapy monitoring. Although primarily addressed to the scientific community, this review offers valuable and accessible information for a wide range of readers interested in the current technological progress with direct relevance to the physics, chemistry, biomedical field, and theranostics. We herein cover magnetic and light-triggered modalities currently being developed for nonconventional cancer treatments. The physical basis of each modality is explained; so readers with a physics or, materials science background can easily grasp new developments in this field
    • 

    corecore