24 research outputs found

    An Analytical Review of Process-Centered Software Engineering Environments

    Get PDF
    Process-centered Software Engineering Environments, or PSEEs, are intended for the definition, modification, and enactment of software process models; they thus bring software development processes into effect. Even though research efforts in process-centered software engineering abound, PSEE technology has not received the attention that it deserves. In order to create a concise but effective and practically applicable evaluation framework for PSEEs, this paper first presents a survey of PSEEs and highlights the current state of the art of the technology. The PSEEs which have been reviewed herein have been regarded as software systems, and as such, have been characterized in terms of their requirements. After providing a conceptual critique of the scope and nature of conventional PSEEs, a detailed criteria-based evaluation of a select set of several recent PSEEs has been conducted. The evaluation criteria have been derived from PSEE requirements and the results of the critique, and have then been refined and evolved into the final criterion set

    Process modelling to support software development under the capability maturity model

    Get PDF

    ADAPTIVE GUIDANCE MODEL BASED SIMILARITY FOR SOFTWARE PROCESS DEVELOPMENT

    Get PDF
    ABSTRACT This paper describes a modeling approach SAGM (Similarity fo

    The design and implementation of the VRPML support environment.

    Get PDF
    Proses pembangunan penslan berkait rapat dengan turutan langkah yang mesti dilakukan oleh jurutera perisian untuk memenuhi matlamat kejuruteraan perisian. Untuk menghasilkan proses yang tepat dan lengkap, proses pembangunan perisian boleh dimodel dan dilari menggunakan bahasa pennodelan (PML) dengan dibantu oleh sistem proses bantuan (PSEE). Software processes relate to the sequences of steps that must be performed by software engineers in order to pursue the goals of software engineering. In order to have an accurate representation and implementation of what the actual steps are, software processes may be modeled and enacted by a process modeling language (PML) and its process support system (called the Process Centered Environments i.e. PSEE)

    Business modeling in process-oriented organizations for RUP-based software development

    Get PDF
    Several organizations are nowadays not particularly comfortable with their internal structuring based on a hierarchical arrangement (sub-divided in departments), where collaborators with a limited view of the overall organization perform their activities. Those organizations recognize the need to move to a model where multi-skilled teams run horizontal business processes that cross the organization, and impact suppliers and clients. To develop software systems for any organization, the development process must always be appropriate and controlled. Additionally for organizations who want to migrate to a horizontal business processes view, it is required to model the organizational platform where the organizational processes will run. This necessity is also true when the organization under consideration is a software house. In this chapter, a proposal of a generic framework for process-oriented software houses is presented. The way of managing the process model and the instantiation of their processes with the Rational Unified Process (RUP) disciplines, whenever they are available, or with other kind of processes is recommended as a way to control and define the software development process. To illustrate the usefulness of the proposal, it is presented how the generic reference framework was executed in a real project called “Premium Wage” and shown, in some detail, the created artifacts (which include several UML models) during the development phases following the RUP disciplines, especially the artifacts produced for business modeling.(undefined

    Modélisation et mise en œuvre de processus collaboratifs ad hoc

    Get PDF
    Software development is an intensively collaborative activity, where common collaboration issues (task management, resource use, communication, etc.) are aggravated by the fast pace of change, artifact complexity and interdependency, an ever larger volume of context information, geographical distribution of participants, etc. Consequently, the issue of tool-based support for collaboration is a pressing one in software engineering. In this thesis, we address collaboration in the context of modeling and enacting development processes. Such processes are traditionally conceived as structures imposed upon the development of a software product. However, a sizable proportion of collaboration in software engineering is ad hoc, and composed of unplanned activities. So as to make software processes contribute to collaboration support, especially the unplanned kind, we focus on their function of information repositories on the main elements of collaboration and the interactions of such elements. Our contribution, on the one hand, is a conceptual model of collaborative development support, which is able to account for popular tools like version control systems and bug tracking systems. This conceptual model is then applied to software processes. We hence define a global approach for the exploitation of process information for collaboration support, based on the central notions of query language and event handling mechanism. On the other hand, we propose a metamodel, CMSPEM (Collaborative Model-Based Software & System Process Engineering Metamodel), which extends SPEM (Software & System Process Engineering Metamodel) with concepts and relationships necessary for collaboration support. This metamodel is then tooled with model creation tools (graphical and textual editors), and a process server which implements an HTTP/REST-based query language and an event subscription and handling framework. Our approach is illustrated and validated, first, by an analysis of development practices inferred from project data from 219 open source projects. Second, collaboration support utilities (making contextual information available, automating repetitive actions, generating reports on individual contributions) have been implemented using the CMSPEM process server.Le développement logiciel est une activité intensément collaborative. Les problématiques habituelles de collaboration (organisation des tâches, utilisation des ressources, communication, etc.) y sont exacerbées par le rythme rapide des changements, la complexité et la grande interdépendance des artéfacts, le volume toujours croissant d’informations de contexte à traiter, la distribution géographique des participants, etc. Par conséquent, la question du support outillé de la collaboration se pose plus fortement que jamais en ingénierie logicielle. Dans cette thèse, nous abordons la question de la collaboration sous l’angle de la modélisation et de l’exploitation des processus de développement. Ces derniers sont traditionnellement considérés comme une structure imposée sur le développement d’un produit logiciel. Cependant, une part importante de la collaboration en génie logiciel est de nature ad hoc, faite d’activités non planifiées. Afin de faire contribuer les processus logiciels au support de la collaboration, en particulier celle non planifiée, nous nous intéressons à leur fonction de banques d’information sur les éléments clés de cette collaboration et les interactions entre ces derniers. Notre contribution est, d’une part, un modèle conceptuel du support au développement collaboratif, capable de rendre compte de la structure d’outils classiques comme ceux de gestion de versions ou de gestion de défauts logiciels. Ce modèle conceptuel est ensuite appliqué aux modèles de processus logiciels. Nous définissons ainsi une approche globale d’exploitation des informations de processus pour le support de la collaboration, basée sur les notions centrales de langage de requête d’information et de mécanisme de réaction aux événements. D’autre part, nous proposons un métamodèle, CMSPEM (Collaborative Model-Based Software & System Process Engineering Metamodel), qui enrichit le standard SPEM (Software & System Process Engineering Metamodel) avec des concepts et relations nécessaires au support de la collaboration. Ce métamodèle est outillé avec des outils de création de modèle (éditeurs graphiques et textuels), et un serveur de processus offrant un langage de requêtes basé sur HTTP/REST et un framework de souscription et de réaction aux événements de processus. Enfin, notre approche conceptuelle a été illustrée et validée, en premier lieu, par une analyse des pratiques inférées à partir des données de développement de 219 projets open source. En second lieu, des utilitaires de support à la collaboration (mise à disposition d’informations conceptuelles, automatisation d’actions, extraction d’information sur les contributions individuelles) ont été implémentés à travers le serveur de processus CMSPEM

    Software process modeling languages: A systematic literature review

    Get PDF
    Context Organizations working in software development are aware that processes are very important assets as well as they are very conscious of the need to deploy well-defined processes with the goal of improving software product development and, particularly, quality. Software process modeling languages are an important support for describing and managing software processes in software-intensive organizations. Objective This paper seeks to identify what software process modeling languages have been defined in last decade, the relationships and dependencies among them and, starting from the current state, to define directions for future research. Method A systematic literature review was developed. 1929 papers were retrieved by a manual search in 9 databases and 46 primary studies were finally included. Results Since 2000 more than 40 languages have been first reported, each of which with a concrete purpose. We show that different base technologies have been used to define software process modeling languages. We provide a scheme where each language is registered together with the year it was created, the base technology used to define it and whether it is considered a starting point for later languages. This scheme is used to illustrate the trend in software process modeling languages. Finally, we present directions for future research. Conclusion This review presents the different software process modeling languages that have been developed in the last ten years, showing the relevant fact that model-based SPMLs (Software Process Modeling Languages) are being considered as a current trend. Each one of these languages has been designed with a particular motivation, to solve problems which had been detected. However, there are still several problems to face, which have become evident in this review. This let us provide researchers with some guidelines for future research on this topic.Ministerio de Economía y Competitividad TIN2010-20057-C03-02Ministerio de Economía y Competitividad TIN 2010-12312-EJunta de Andalucía TIC-578

    Optimal agricultural policy and PSE measurement : an assessment and application to Norway

    Get PDF
    The producer support estimate (the successor to the producer support equivalent) calculated by the OECD is widely used as an indicator of distortions created by agricultural policies. In this paper we demonstrate that changes in the relative (percentage) PSE are not an accurate indicator of the implications of policy reform for domestic welfare or for trade distortions. We demonstrate that it is important to consider the implications of changes in both the level and the form of support in evaluating the impact of policy reform. Using a model of Norwegian agriculture we show that reforms indicated towards the provision of public goods, while apparently leading to an increase in relative support, are actually superior to existing agricultural policies or to a policy aimed at eliminating subsidized exports both in terms of reducing trade distortions and increasing domestic economic welfare

    Cmmi Implementation Framework

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007Bu çalısmada, sistematik ve en iyi pratiklere dayanan bir süreç yönetimi yazılımı gelistirilmektir. Tasarlanan proses altyapısı ve gelistirilen yazılım, yazılım mühendisliginin proje yönetimi, gereksinim yönetimi, analiz ve tasarm, uygulama gelistirme, test, degisiklik yönetimi ve aktarım süreçlerinde gerekli olan spesifik tecrübeleri bir bütün içinde, yönetilebilir bir sekilde tutulmasını hedeflemektedir. CMMI modelinde yer alan temel özellik olan izlenebilirligin süreç altyapısına uygulanması ve uygulamada maksimum faydanın alınması amaçlanmaktadır. Orta ve küçük ölçekli firmaların süreç yönetimi konularına adaptasyonunu en hızlı ve en dogru yapabilecekleri bir ortam gelistirilmistir.This thesis studies the development of a systematic software solution to provide software engineering process management based on best practices. The said software solution which has been designed and developed for this study aims to provide specific practices for integrated management of project management, requirements management, analysis & design, implementation, testing, change management, and deployment. Accordingly, this thesis aims to establish an environment that provides fast and applicable adaptation to such software engineering processes for small and medium scale companies. The solution provided within this thesis study is based on one of the more popular models developed by Carnegie Mellon University (U.S.) Software Engineering Institute, the Capability Maturity Model Integration (CMMI) model.Yüksek LisansM.Sc
    corecore