2,734 research outputs found

    A methodology for the selection of a paradigm of reasoning under uncertainty in expert system development

    Get PDF
    The aim of this thesis is to develop a methodology for the selection of a paradigm of reasoning under uncertainty for the expert system developer. This is important since practical information on how to select a paradigm of reasoning under uncertainty is not generally available. The thesis explores the role of uncertainty in an expert system and considers the process of reasoning under uncertainty. The possible sources of uncertainty are investigated and prove to be crucial to some aspects of the methodology. A variety of Uncertainty Management Techniques (UMTs) are considered, including numeric, symbolic and hybrid methods. Considerably more information is found in the literature on numeric methods, than the latter two. Methods that have been proposed for comparing UMTs are studied and comparisons reported in the literature are summarised. Again this concentrates on numeric methods, since there is more literature available. The requirements of a methodology for the selection of a UMT are considered. A manual approach to the selection process is developed. The possibility of extending the boundaries of knowledge stored in the expert system by including meta-data to describe the handling of uncertainty in an expert system is then considered. This is followed by suggestions taken from the literature for automating the process of selection. Finally consideration is given to whether the objectives of the research have been met and recommendations are made for the next stage in researching a methodology for the selection of a paradigm of reasoning under uncertainty in expert system development

    Operational Decision Making under Uncertainty: Inferential, Sequential, and Adversarial Approaches

    Get PDF
    Modern security threats are characterized by a stochastic, dynamic, partially observable, and ambiguous operational environment. This dissertation addresses such complex security threats using operations research techniques for decision making under uncertainty in operations planning, analysis, and assessment. First, this research develops a new method for robust queue inference with partially observable, stochastic arrival and departure times, motivated by cybersecurity and terrorism applications. In the dynamic setting, this work develops a new variant of Markov decision processes and an algorithm for robust information collection in dynamic, partially observable and ambiguous environments, with an application to a cybersecurity detection problem. In the adversarial setting, this work presents a new application of counterfactual regret minimization and robust optimization to a multi-domain cyber and air defense problem in a partially observable environment

    Multi-criteria analysis: a manual

    Get PDF

    Building Bayesian Networks: Elicitation, Evaluation, and Learning

    Get PDF
    As a compact graphical framework for representation of multivariate probabilitydistributions, Bayesian networks are widely used for efficient reasoning underuncertainty in a variety of applications, from medical diagnosis to computertroubleshooting and airplane fault isolation. However, construction of Bayesiannetworks is often considered the main difficulty when applying this frameworkto real-world problems. In real world domains, Bayesian networks are often built by knowledge engineering approach. Unfortunately, eliciting knowledge from domain experts isa very time-consuming process, and could result in poor-quality graphicalmodels when not performed carefully. Over the last decade, the research focusis shifting more towards learning Bayesian networks from data, especially withincreasing volumes of data available in various applications, such asbiomedical, internet, and e-business, among others.Aiming at solving the bottle-neck problem of building Bayesian network models, thisresearch work focuses on elicitation, evaluation and learning Bayesiannetworks. Specifically, the contribution of this dissertation involves the research in the following five areas:a) graphical user interface tools forefficient elicitation and navigation of probability distributions, b) systematic and objective evaluation of elicitation schemes for probabilistic models, c)valid evaluation of performance robustness, i.e., sensitivity, of Bayesian networks,d) the sensitivity inequivalent characteristic of Markov equivalent networks, and the appropriateness of using sensitivity for model selection in learning Bayesian networks,e) selective refinement for learning probability parameters of Bayesian networks from limited data with availability of expert knowledge. In addition, an efficient algorithm for fast sensitivity analysis is developed based on relevance reasoning technique. The implemented algorithm runs very fast and makes d) and e) more affordable for real domain practice
    • 

    corecore