16,485 research outputs found

    Assessing fun: young children as evaluators of interactive systems.

    Get PDF
    In this paper, we describe an exploratory study on the challenges of conducting usability tests with very young children aged 3 to 4 years old (nursery age) and the differences when working with older children aged 5 to 6 years old (primary school). A pilot study was conducted at local nursery and primary schools to understand and experience the challenges working with young children interacting with computer products. We report on the studies and compare the experiences of working with children of different age groups in evaluation studies of interactive systems

    PLU-E: a proposed framework for planning and conducting evaluation studies with children.

    Get PDF
    While many models exist to support the design process of a software development project, the evaluation process is far less well defined and this lack of definition often leads to poorly designed evaluations, or the use of the wrong evaluation method. Evaluations of products for children can be especially complex as they need to consider the different requirements and aims that such a product may have, and often use new or developing evaluation methods. This paper takes the view that evaluations should be planned from the start of a project in order to yield the best results, and proposes a framework to facilitate this. This framework is particularly intended to support the varied and often conflicting requirements of a product designed for children, as defined by the PLU model, but could be adapted for other user groups

    Heuristic Evaluation for Serious Immersive Games and M-instruction

    Get PDF
    © Springer International Publishing Switzerland 2016. Two fast growing areas for technology-enhanced learning are serious games and mobile instruction (M-instruction or M-Learning). Serious games are ones that are meant to be more than just entertainment. They have a serious use to educate or promote other types of activity. Immersive Games frequently involve many players interacting in a shared rich and complex-perhaps web-based-mixed reality world, where their circumstances will be multi and varied. Their reality may be augmented and often self-composed, as in a user-defined avatar in a virtual world. M-instruction and M-Learning is learning on the move; much of modern computer use is via smart devices, pads, and laptops. People use these devices all over the place and thus it is a natural extension to want to use these devices where they are to learn. This presents a problem if we wish to evaluate the effectiveness of the pedagogic media they are using. We have no way of knowing their situation, circumstance, education background and motivation, or potentially of the customisation of the final software they are using. Getting to the end user itself may also be problematic; these are learning environments that people will dip into at opportune moments. If access to the end user is hard because of location and user self-personalisation, then one solution is to look at the software before it goes out. Heuristic Evaluation allows us to get User Interface (UI) and User Experience (UX) experts to reflect on the software before it is deployed. The effective use of heuristic evaluation with pedagogical software [1] is extended here, with existing Heuristics Evaluation Methods that make the technique applicable to Serious Immersive Games and mobile instruction (M-instruction). We also consider how existing Heuristic Methods may be adopted. The result represents a new way of making this methodology applicable to this new developing area of learning technology

    Glitchspace:teaching programming through puzzles in cyberspace

    Get PDF
    There is an increasing need to address the player experience in games-based learning. Whilst games offer enormous potential as learning experiences, the balance between entertainment and education must be carefully designed and delivered. Successful commercial games tend to focus gameplay above any educational aspects. In contrast, games designed for educational purposes have a habit of sacrificing entertainment for educational value which can result in a decline in player engagement. For both, the player experience is critical as it can have a profound effect on both the commercial success of the game and in delivering the educational engagement. As part of an Interface-funded research project Abertay University worked with the independent games company, Space Budgie, to enhance the user experience of their educational game Glitchspace. The game aimed to teach basic coding principles and terminology in an entertaining way. The game sets the player inside a Mondrian-inspired cyberspace world where to progress the player needs to reprogramme the world around them to solve puzzles. The main objective of the academic-industry collaborative project was to analyse the user experience (UX) of the game to increase its educational value for a standalone educational version. The UX design focused on both pragmatic and hedonic qualities such playability, usability and the psychological impact of the game. The empirical study of the UX design allowed all parties to develop a deeper understanding of how the game was being played and the initial reactions to the game by the player. The core research question that the study sought to answer was whether when designing an educational game, UX design could improve philosophical concepts like motivation and engagement to foster better learning experiences.</p

    Effective Affective User Interface Design in Games

    Get PDF
    It is proposed that games, which are designed to generate positive affect, are most successful when they facilitate flow (Csikszentmihalyi 1992). Flow is a state of concentration, deep enjoyment, and total absorption in an activity. The study of games, and a resulting understanding of flow in games can inform the design of nonleisure software for positive affect. The paper considers the ways in which computer games contravene Nielsen’s guidelines for heuristic evaluation (Nielsen and Molich 1990) and how these contraventions impact on flow. The paper also explores the implications for research that stem from the differences between games played on a personal computer and games played on a dedicated console. This research takes important initial steps towards defining how flow in computer games can inform affective design

    Making in-class skills training more effective: the scope for interactive videos to complement the delivery of practical pedestrian training

    No full text
    Skills and awareness of young pedestrians can be improved with on-street practical pedestrian training, often delivered in schools in the United Kingdom by local authorities with the intention of improving road safety. This training is often supplemented by in-class paper based worksheet activities which are seen to be less effective than practical training in that they focus on knowledge acquisition rather than directly improving the correct application of safe pedestrian skills at the roadside. Previous research indicates that interactive video tools have the potential to develop procedural skills whilst offering an engaging road safety educational experience, which could positively impact on road crossing behaviour.In this paper, the design and development of a hazard-identification interactive road safety training video targeting child road crossing skills is presented. The interactive video was shown to be an engaging training resource for 6-7 year old children. The tool’s scope for improving pedestrians’ roadside skills is considered along with the wider implications for interactive video to aid safety training in other areas

    Using multimedia interfaces for speech therapy

    Get PDF
    corecore