2,546 research outputs found

    Assessing the similarity of ligand binding conformations with the Contact Mode Score

    Get PDF
    Β© 2016 Elsevier Ltd Structural and computational biologists often need to measure the similarity of ligand binding conformations. The commonly used root-mean-square deviation (RMSD) is not only ligand-size dependent, but also may fail to capture biologically meaningful binding features. To address these issues, we developed the Contact Mode Score (CMS), a new metric to assess the conformational similarity based on intermolecular protein-ligand contacts. The CMS is less dependent on the ligand size and has the ability to include flexible receptors. In order to effectively compare binding poses of non-identical ligands bound to different proteins, we further developed the eXtended Contact Mode Score (XCMS). We believe that CMS and XCMS provide a meaningful assessment of the similarity of ligand binding conformations. CMS and XCMS are freely available at http://brylinski.cct.lsu.edu/content/contact-mode-score and http://geaux-computational-bio.github.io/contact-mode-score/

    Data-Driven Rational Drug Design

    Get PDF
    Vast amount of experimental data in structural biology has been generated, collected and accumulated in the last few decades. This rich dataset is an invaluable mine of knowledge, from which deep insights can be obtained and practical applications can be developed. To achieve that goal, we must be able to manage such Big Data\u27\u27 in science and investigate them expertly. Molecular docking is a field that can prominently make use of the large structural biology dataset. As an important component of rational drug design, molecular docking is used to perform large-scale screening of putative associations between small organic molecules and their pharmacologically relevant protein targets. Given a small molecule (ligand), a molecular docking program simulates its interaction with the target protein, and reports the probable conformation of the protein-ligand complex, and the relative binding affinity compared against other candidate ligands. This dissertation collects my contributions in several aspects of molecular docking. My early contribution focused on developing a novel metric to quantify the structural similarity between two protein-ligand complexes. Benchmarks show that my metric addressed several issues associated with the conventional metric. Furthermore, I extended the functionality of this metric to cross different systems, effectively utilizing the data at the proteome level. After developing the novel metric, I formulated a scoring function that can extract the biological information of the complex, integrate it with the physics components, and finally enhance the performance. Through collaboration, I implemented my model into an ultra-fast, adaptive program, which can take advantage of a range of modern parallel architectures and handle the demanding data processing tasks in large scale molecular docking applications

    Identifying Ligand Binding Conformations of the Ξ²2-Adrenergic Receptor by Using Its Agonists as Computational Probes

    Get PDF
    Recently available G-protein coupled receptor (GPCR) structures and biophysical studies suggest that the difference between the effects of various agonists and antagonists cannot be explained by single structures alone, but rather that the conformational ensembles of the proteins need to be considered. Here we use an elastic network model-guided molecular dynamics simulation protocol to generate an ensemble of conformers of a prototypical GPCR, Ξ²2-adrenergic receptor (Ξ²2AR). The resulting conformers are clustered into groups based on the conformations of the ligand binding site, and distinct conformers from each group are assessed for their binding to known agonists of Ξ²2AR. We show that the select ligands bind preferentially to different predicted conformers of Ξ²2AR, and identify a role of Ξ²2AR extracellular region as an allosteric binding site for larger drugs such as salmeterol. Thus, drugs and ligands can be used as "computational probes" to systematically identify protein conformers with likely biological significance. Β© 2012 Isin et al

    AN IN SILICO STUDY OF THE DELTA OPIOID RECEPTOR USING SMALL MOLECULES

    Get PDF
    The DOR is the least studied out of the three opioid receptors (Mu, Kappa, and Delta). The most is known of the Mu Opioid receptor (MOR) and the drugs that target it have led to the global opioid epidemic due to their adverse effects of tolerance and addiction. The DOR is not known for the same adverse effects and therefore, is a promising pharmacological target for the development of new opioid ligands. In this thesis, molecular modeling, simulations and other computational methods are introduced in Chapter 1 where these methods are used to study the activation mechanism of DOR (Chapter 2) and are used to identify novel DOR agonists (Chapter 3). Recently, both the inactive and active conformations of the DOR have been solved. However, the activation mechanism remains to be elusive. In Chapter 2, molecular dynamics (MD) simulations will offer a deeper insight into the dynamics and interactions beginning with the inactive conformation of the receptor when bound to an agonist undergoing a conformational change. Chapter 3 will involve the use of high-throughput screening of new molecules for potential agonist candidates using multiple conformations of the active conformation of the DOR. The top lead compounds subjected further computational analysis on their drug properties to ensure that they do not cause any unwanted side effects. Final lead compounds are available for experimental testing

    Rational Design of Small-Molecule Inhibitors of Protein-Protein Interactions: Application to the Oncogenic c-Myc/Max Interaction

    Get PDF
    Protein-protein interactions (PPIs) constitute an emerging class of targets for pharmaceutical intervention pursued by both industry and academia. Despite their fundamental role in many biological processes and diseases such as cancer, PPIs are still largely underrepresented in today's drug discovery. This dissertation describes novel computational approaches developed to facilitate the discovery/design of small-molecule inhibitors of PPIs, using the oncogenic c-Myc/Max interaction as a case study.First, we critically review current approaches and limitations to the discovery of small-molecule inhibitors of PPIs and we provide examples from the literature.Second, we examine the role of protein flexibility in molecular recognition and binding, and we review recent advances in the application of Elastic Network Models (ENMs) to modeling the global conformational changes of proteins observed upon ligand binding. The agreement between predicted soft modes of motions and structural changes experimentally observed upon ligand binding supports the view that ligand binding is facilitated, if not enabled, by the intrinsic (pre-existing) motions thermally accessible to the protein in the unliganded form.Third, we develop a new method for generating models of the bioactive conformations of molecules in the absence of protein structure, by identifying a set of conformations (from different molecules) that are most mutually similar in terms of both their shape and chemical features. We show how to solve the problem using an Integer Linear Programming formulation of the maximum-edge weight clique problem. In addition, we present the application of the method to known c-Myc/Max inhibitors.Fourth, we propose an innovative methodology for molecular mimicry design. We show how the structure of the c-Myc/Max complex was exploited to designing compounds that mimic the binding interactions that Max makes with the leucine zipper domain of c-Myc.In summary, the approaches described in this dissertation constitute important contributions to the fields of computational biology and computer-aided drug discovery, which combine biophysical insights and computational methods to expedite the discovery of novel inhibitors of PPIs

    In silico assessment of potential druggable pockets on the surface of Ξ±1-Antitrypsin conformers

    Get PDF
    The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein Ξ±1-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the Β΅M–nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation

    The utility of geometrical and chemical restraint information extracted from predicted ligand-binding sites in protein structure refinement

    Get PDF
    Exhaustive exploration of molecular interactions at the level of complete proteomes requires efficient and reliable computational approaches to protein function inference. Ligand docking and ranking techniques show considerable promise in their ability to quantify the interactions between proteins and small molecules. Despite the advances in the development of docking approaches and scoring functions, the genome-wide application of many ligand docking/screening algorithms is limited by the quality of the binding sites in theoretical receptor models constructed by protein structure prediction. In this study, we describe a new template-based method for the local refinement of ligand-binding regions in protein models using remotely related templates identified by threading. We designed a Support Vector Regression (SVR) model that selects correct binding site geometries in a large ensemble of multiple receptor conformations. The SVR model employs several scoring functions that impose geometrical restraints on the CΞ± positions, account for the specific chemical environment within a binding site and optimize the interactions with putative ligands. The SVR score is well correlated with the RMSD from the native structure; in 47% (70%) of the cases, the Pearson\u27s correlation coefficient is \u3e0.5 (\u3e0.3). When applied to weakly homologous models, the average heavy atom, local RMSD from the native structure of the top-ranked (best of top five) binding site geometries is 3.1. Γ… (2.9. Γ…) for roughly half of the targets; this represents a 0.1 (0.3). Γ… average improvement over the original predicted structure. Focusing on the subset of strongly conserved residues, the average heavy atom RMSD is 2.6. Γ… (2.3. Γ…). Furthermore, we estimate the upper bound of template-based binding site refinement using only weakly related proteins to be ∼2.6. Γ… RMSD. This value also corresponds to the plasticity of the ligand-binding regions in distant homologues. The Binding Site Refinement (BSR) approach is available to the scientific community as a web server that can be accessed at http://cssb.biology.gatech.edu/bsr/. Β© 2010 Elsevier Inc
    • …
    corecore