2,024 research outputs found

    Simulation methods for reliability-based design optimization and model updating of civil engineering structures and systems

    Get PDF
    This thesis presents a collection of original contributions pertaining to the subjects of reliability-based design optimization (RBDO) and model updating of civil engineering structures and systems. In this regard, probability theory concepts and tools are instrumental in the formulation of the herein reported developments. Firstly, two approaches are devised for the RBDO of structural dynamical systems under stochastic excitation. Namely, a stochastic search technique is proposed for constrained and unconstrained RBDO problems involving continuous, discrete and mixed discrete-continuous design spaces, whereas an efficient sensitivity assessment framework for linear stochastic structures is implemented to identify optimal designs and evaluate their sensitivities. Moreover, two classes of model updating problems are considered. In this context, the Bayesian interpretation of probability theory plays a key role in the proposed solution schemes. Specifically, contaminant source detection in water distribution networks is addressed by resorting to a sampling-based Bayesian model class selection framework. Furthermore, an effective strategy for Bayesian model updating with structural reliability methods is presented to treat identification problems involving structural dynamical systems, measured response data, and high-dimensional parameter spaces. The approaches proposed in this thesis integrate stochastic simulation techniques as an essential part of their formulation, which allows obtaining non-trivial information about the systems of interest as a byproduct of the solution processes. Overall, the findings presented in this thesis suggest that the reported methods can be potentially adopted as supportive tools for a number of practical decision-making processes in civil engineering.Diese Arbeit stellt eine Sammlung von BeitrĂ€gen vor, die sich mit der Reliability-based-Design-Optimization (RBDO) und dem Model updating von Strukturen und Systemen im Bauwesen befassen. In diesem Zusammenhang sind wahrscheinlichkeitstheoretische Konzepte fĂŒr die Formulierung der hier vorgestellten Entwicklungen von entscheidender Bedeutung. ZunĂ€chst werden zwei AnsĂ€tze fĂŒr eine RBDO von strukturdynamischen Systemen unter stochastischer Anregung entwickelt. Es wird eine stochastische Suchtechnik fĂŒr beschrĂ€nkte und unbeschrĂ€nkte RBDO-Probleme vorgeschlagen. Diese beziehen kontinuierliche, diskrete und gemischt diskret-kontinuierliche DesignrĂ€ume ein. Gleichzeitig wird ein effizientes Framework zur Bewertung der SensitivitĂ€t lineare stochastische Strukturen implementiert, um optimale Designs zu identifizieren und ihre SensitivitĂ€ten zu bewerten. DarĂŒber hinaus werden zwei Klassen von Problem aus dem Model updating betrachtet. Der Fokus wird hierbei auf die Erkennung von Kontaminationsquellen in Wasserverteilungsnetzen mithilfe eines auf Stichproben basierenden Bayesian-Model-Class-selection-Framework gelegt. Ferner wird eine effektive Strategie zur Bearbeitung von Problemen des Bayesian-Model-updating, die strukturdynamischen Systeme, gemessene Systemantwortdaten und hochdimensionale ParameterrĂ€ume umfassen, vorgestellt. Die beschriebenen AnsĂ€tze verwenden stochastische Simulationstechniken als wesentlicher Bestandteil ihrer Formulierung, wodurch nicht-triviale Informationen ĂŒber betrachtete Systeme als Nebenprodukt der Lösungsprozesse gewonnen werden können. Insgesamt deuten die vorgestellten Ergebnisse dieser Arbeit darauf hin, dass die beschriebenen Methoden potenziell als unterstĂŒtzende Elemente in praktischen Entscheidungsproblemen im Zusammenhang mit Strukturen und Systemen im Bauwesen eingesetzt werden können

    Urban building energy modelling for retrofit analysis under uncertainty

    Get PDF
    Urban building energy modelling (UBEM) is a growing research field that seeks to expand conventional building energy modelling to the realm of neighbourhoods, cities or even entire building stocks. The aim is to establish frameworks for analysing combined urban e˙ects rather than those of individual buildings, which city governments, utilities and other energy policy stakeholders can use to assess the current environmental impact of our buildings, and, maybe more importantly, the future e˙ects that energy renovation programmes and energy supply infrastructure changes might have. However, the task of creating reliable models of new or existing urban areas is diÿcult, as it requires an enormous amount of detailed input data – data which is rarely available. A solution to this problem is the introduction of archetype modelling, which is used to break down the building stock into a manageable subset of semantic building archetypes, for which, it is possible to characterize their parameters. It is the focus of this thesis to explore and develop new methods for stochastic archetype characterization that can enable archetype-based UBEM to be used for accurate urban-scale time series analysis.The thesis is divided into three parts. The first part acts as an introduction to case study data of the residential building stock of detached single-family houses (SFHs) in Aarhus, Denmark, which is used throughout the thesis for demonstration purposes.The second part concerns the development of methods for archetype modelling. Bayesian methods for archetype parameter calibration are presented that incorporates the variability of the underlying cluster of buildings, and correlation between parameters, to enable informed predictions of unseen buildings from the archetype under uncertainty. The capabilities of archetype-based UBEM are further widened through the introduction of dynamic building energy modelling that allows for time series analysis.The third part of the thesis is devoted to demonstrating the usefulness of the proposed archetype formulation as a building block for urban-scale applications. An exhaustive test scheme is employed to validate the predictive performance of the framework before establishing a city-scale UBEM of approx. 23,000 SFHs in Aarhus. It is used to forecast citywide heating energy use from 2017 up until 2050 under uncertainty of energy renovations and climate change.Overall, the proposed archetype-based UBEM framework promises very useful for fast, flexible and reliable urban-scale time series analysis, including forecasting the effects of energy renovation or city densification, to establish an informed basis for energy policy decision-making

    Study of Finite Elements-based reliability and maintenance algorithmic methodologies analysis applied to aircraft structures and design optimization

    Get PDF
    This thesis presents the development of a research methodology oriented to the analysis of an aircraft structure in terms of operational reliability and maintainability requirements regarding its airworthiness. The study has been focused on modern commercial aircraft models, carrying out a market research and model selection according to different criteria. The study then develops a practical implementation consisting of the design approach of the aircraft airframe and main structural components for its subsequent numerical analysis and simulation. The numerical simulations will be computed by application of the Finite Elements Method on the main structural systems of the aircraft and establishment of boundary conditions. These simulations will allow the development of a computational study on linear, non-linear, and transient simulations of static loads, buckling, modal analysis, temperature, fatigue and thermal stress of individual structures and full assembly in different conditions. Finally, these results will be assessed and exported to a Matlab code which will compute an algorithmic methodology in order to approach the operational reliability and safety of the aircraft in the studied conditions. The thesis will conclude with a review of airworthiness regulations a proposal of research paths and further development of the methodology implemented

    Uncertainty modelling in power spectrum estimation of environmental processes

    Get PDF
    For efficient reliability analysis of buildings and structures, robust load models are required in stochastic dynamics, which can be estimated in particular from environmental processes, such as earthquakes or wind loads. To determine the response behaviour of a dynamic system under such loads, the power spectral density (PSD) function is a widely used tool for identifying the frequency components and corresponding amplitudes of environmental processes. Since the real data records required for this purpose are often subject to aleatory and epistemic uncertainties, and the PSD estimation process itself can induce further uncertainties, a rigorous quantification of these is essential, as otherwise a highly inaccurate load model could be generated which may yield in misleading simulation results. A system behaviour that is actually catastrophic can thus be shifted into an acceptable range, classifying the system as safe even though it is exposed to a high risk of damage or collapse. To address these issues, alternative loading models are proposed using probabilistic and non-deterministic models, that are able to efficiently account for these uncertainties and to model the loadings accordingly. Various methods are used in the generation of these load models, which are selected in particular according to the characteristic of the data and the number of available records. In case multiple data records are available, reliable statistical information can be extracted from a set of similar PSD functions that differ, for instance, only slightly in shape and peak frequency. Based on these statistics, a PSD function model is derived utilising subjective probabilities to capture the epistemic uncertainties and represent this information effectively. The spectral densities are characterised as random variables instead of employing discrete values, and thus the PSD function itself represents a non-stationary random process comprising a range of possible valid PSD functions for a given data set. If only a limited amount of data records is available, it is not possible to derive such reliable statistical information. Therefore, an interval-based approach is proposed that determines only an upper and lower bound and does not rely on any distribution within these bounds. A set of discrete-valued PSD functions is transformed into an interval-valued PSD function by optimising the weights of pre-derived basis functions from a Radial Basis Function Network such that they compose an upper and lower bound that encompasses the data set. Therefore, a range of possible values and system responses are identified rather than discrete values, which are able to quantify the epistemic uncertainties. When generating such a load model using real data records, the problem can arise that the individual records exhibit a high spectral variance in the frequency domain and therefore differ too much from each other, although they appear to be similar in the time domain. A load model derived from these data may not cover the entire spectral range and is therefore not representative. The data are therefore grouped according to their similarity using the Bhattacharyya distance and k-means algorithm, which may generate two or more load models from the entire data set. These can be applied separately to the structure under investigation, leading to more accurate simulation results. This approach can also be used to estimate the spectral similarity of individual data sets in the frequency domain, which is particularly relevant for the load models mentioned above. If the uncertainties are modelled directly in the time signal, it can be a challenging task to transform them efficiently into the frequency domain. Such a signal may consist only of reliable bounds in which the actual signal lies. A method is presented that can automatically propagate this interval uncertainty through the discrete Fourier transform, obtaining the exact bounds on the Fourier amplitude and an estimate of the PSD function. The method allows such an interval signal to be propagated without making assumptions about the dependence and distribution of the error over the time steps. These novel representations of load models are able to quantify epistemic uncertainties inherent in real data records and induced due to the PSD estimation process. The strengths and advantages of these approaches in practice are demonstrated by means of several numerical examples concentrated in the field of stochastic dynamics.FĂŒr eine effiziente ZuverlĂ€ssigkeitsanalyse von GebĂ€uden und Strukturen sind robuste Belastungsmodelle in der stochastischen Dynamik erforderlich, die insbesondere aus Umweltprozessen wie Erdbeben oder Windlasten geschĂ€tzt werden können. Um das Antwortverhalten eines dynamischen Systems unter solchen Belastungen zu bestimmen, ist die Funktion der Leistungsspektraldichte (PSD) ein weit verbreitetes Werkzeug zur Identifizierung der Frequenzkomponenten und der entsprechenden Amplituden von Umweltprozessen. Da die zu diesem Zweck benötigten realen DatensĂ€tze hĂ€ufig mit aleatorischen und epistemischen Unsicherheiten behaftet sind und der PSD-SchĂ€tzprozess selbst weitere Unsicherheiten induzieren kann, ist eine strenge Quantifizierung dieser Unsicherheiten unerlĂ€sslich, da andernfalls ein sehr ungenaues Belastungsmodell erzeugt werden könnte, das zu fehlerhaften Simulationsergebnissen fĂŒhren kann. Ein eigentlich katastrophales Systemverhalten kann so in einen akzeptablen Bereich verschoben werden, so dass das System als sicher eingestuft wird, obwohl es einem hohen Risiko der BeschĂ€digung oder des Zusammenbruchs ausgesetzt ist. Um diese Probleme anzugehen, werden alternative Belastungsmodelle vorgeschlagen, die probabilistische und nicht-deterministische Modelle verwenden, welche in der Lage sind, diese Unsicherheiten effizient zu berĂŒcksichtigen und die Belastungen entsprechend zu modellieren. Bei der Erstellung dieser Lastmodelle werden verschiedene Methoden verwendet, die insbesondere nach dem Charakter der Daten und der Anzahl der verfĂŒgbaren DatensĂ€tze ausgewĂ€hlt werden. Wenn mehrere DatensĂ€tze verfĂŒgbar sind, können zuverlĂ€ssige statistische Informationen aus einer Reihe Ă€hnlicher PSD-Funktionen extrahiert werden, die sich z.B. nur geringfĂŒgig in Form und Spitzenfrequenz unterscheiden. Auf der Grundlage dieser Statistiken wird ein Modell der PSD-Funktion abgeleitet, das subjektive Wahrscheinlichkeiten verwendet, um die epistemischen Unsicherheiten zu erfassen und diese Informationen effektiv darzustellen. Die spektralen Leistungsdichten werden als Zufallsvariablen charakterisiert, anstatt diskrete Werte zu verwenden, somit stellt die PSD-Funktion selbst einen nicht-stationĂ€ren Zufallsprozess dar, der einen Bereich möglicher gĂŒltiger PSD-Funktionen fĂŒr einen gegebenen Datensatz umfasst. Wenn nur eine begrenzte Anzahl von DatensĂ€tzen zur VerfĂŒgung steht, ist es nicht möglich, solche zuverlĂ€ssigen statistischen Informationen abzuleiten. Daher wird ein intervallbasierter Ansatz vorgeschlagen, der nur eine obere und untere Grenze bestimmt und sich nicht auf eine Verteilung innerhalb dieser Grenzen stĂŒtzt. Ein Satz von diskret wertigen PSD-Funktionen wird in eine intervallwertige PSD-Funktion umgewandelt, indem die Gewichte von vorab abgeleiteten Basisfunktionen aus einem Radialbasisfunktionsnetz so optimiert werden, dass sie eine obere und untere Grenze bilden, die den Datensatz umfassen. Damit wird ein Bereich möglicher Werte und Systemreaktionen anstelle diskreter Werte ermittelt, welche in der Lage sind, epistemische Unsicherheiten zu erfassen. Bei der Erstellung eines solchen Lastmodells aus realen DatensĂ€tzen kann das Problem auftreten, dass die einzelnen DatensĂ€tze eine hohe spektrale Varianz im Frequenzbereich aufweisen und sich daher zu stark voneinander unterscheiden, obwohl sie im Zeitbereich Ă€hnlich erscheinen. Ein aus diesen Daten abgeleitetes Lastmodell deckt möglicherweise nicht den gesamten Spektralbereich ab und ist daher nicht reprĂ€sentativ. Die Daten werden daher mit Hilfe der Bhattacharyya-Distanz und des k-means-Algorithmus nach ihrer Ähnlichkeit gruppiert, wodurch zwei oder mehr Belastungsmodelle aus dem gesamten Datensatz erzeugt werden können. Diese können separat auf die zu untersuchende Struktur angewandt werden, was zu genaueren Simulationsergebnissen fĂŒhrt. Dieser Ansatz kann auch zur SchĂ€tzung der spektralen Ähnlichkeit einzelner DatensĂ€tze im Frequenzbereich verwendet werden, was fĂŒr die oben genannten Lastmodelle besonders relevant ist. Wenn die Unsicherheiten direkt im Zeitsignal modelliert werden, kann es eine schwierige Aufgabe sein, sie effizient in den Frequenzbereich zu transformieren. Ein solches Signal kann möglicherweise nur aus zuverlĂ€ssigen Grenzen bestehen, in denen das tatsĂ€chliche Signal liegt. Es wird eine Methode vorgestellt, mit der diese Intervallunsicherheit automatisch durch die diskrete Fourier Transformation propagiert werden kann, um die exakten Grenzen der Fourier-Amplitude und der SchĂ€tzung der PSD-Funktion zu erhalten. Die Methode ermöglicht es, ein solches Intervallsignal zu propagieren, ohne Annahmen ĂŒber die AbhĂ€ngigkeit und Verteilung des Fehlers ĂŒber die Zeitschritte zu treffen. Diese neuartigen Darstellungen von Lastmodellen sind in der Lage, epistemische Unsicherheiten zu quantifizieren, die in realen DatensĂ€tzen enthalten sind und durch den PSD-SchĂ€tzprozess induziert werden. Die StĂ€rken und Vorteile dieser AnsĂ€tze in der Praxis werden anhand mehrerer numerischer Beispiele aus dem Bereich der stochastischen Dynamik demonstriert

    Enhancing the information content of geophysical data for nuclear site characterisation

    Get PDF
    Our knowledge and understanding to the heterogeneous structure and processes occurring in the Earth’s subsurface is limited and uncertain. The above is true even for the upper 100m of the subsurface, yet many processes occur within it (e.g. migration of solutes, landslides, crop water uptake, etc.) are important to human activities. Geophysical methods such as electrical resistivity tomography (ERT) greatly improve our ability to observe the subsurface due to their higher sampling frequency (especially with autonomous time-lapse systems), larger spatial coverage and less invasive operation, in addition to being more cost-effective than traditional point-based sampling. However, the process of using geophysical data for inference is prone to uncertainty. There is a need to better understand the uncertainties embedded in geophysical data and how they translate themselves when they are subsequently used, for example, for hydrological or site management interpretations and decisions. This understanding is critical to maximize the extraction of information in geophysical data. To this end, in this thesis, I examine various aspects of uncertainty in ERT and develop new methods to better use geophysical data quantitatively. The core of the thesis is based on two literature reviews and three papers. In the first review, I provide a comprehensive overview of the use of geophysical data for nuclear site characterization, especially in the context of site clean-up and leak detection. In the second review, I survey the various sources of uncertainties in ERT studies and the existing work to better quantify or reduce them. I propose that the various steps in the general workflow of an ERT study can be viewed as a pipeline for information and uncertainty propagation and suggested some areas have been understudied. One of these areas is measurement errors. In paper 1, I compare various methods to estimate and model ERT measurement errors using two long-term ERT monitoring datasets. I also develop a new error model that considers the fact that each electrode is used to make multiple measurements. In paper 2, I discuss the development and implementation of a new method for geoelectrical leak detection. While existing methods rely on obtaining resistivity images through inversion of ERT data first, the approach described here estimates leak parameters directly from raw ERT data. This is achieved by constructing hydrological models from prior site information and couple it with an ERT forward model, and then update the leak (and other hydrological) parameters through data assimilation. The approach shows promising results and is applied to data from a controlled injection experiment in Yorkshire, UK. The approach complements ERT imaging and provides a new way to utilize ERT data to inform site characterisation. In addition to leak detection, ERT is also commonly used for monitoring soil moisture in the vadose zone, and increasingly so in a quantitative manner. Though both the petrophysical relationships (i.e., choices of appropriate model and parameterization) and the derived moisture content are known to be subject to uncertainty, they are commonly treated as exact and error‐free. In paper 3, I examine the impact of uncertain petrophysical relationships on the moisture content estimates derived from electrical geophysics. Data from a collection of core samples show that the variability in such relationships can be large, and they in turn can lead to high uncertainty in moisture content estimates, and they appear to be the dominating source of uncertainty in many cases. In the closing chapters, I discuss and synthesize the findings in the thesis within the larger context of enhancing the information content of geophysical data, and provide an outlook on further research in this topic

    Automated X-ray image analysis for cargo security: Critical review and future promise

    Get PDF
    We review the relatively immature field of automated image analysis for X-ray cargo imagery. There is increasing demand for automated analysis methods that can assist in the inspection and selection of containers, due to the ever-growing volumes of traded cargo and the increasing concerns that customs- and security-related threats are being smuggled across borders by organised crime and terrorist networks. We split the field into the classical pipeline of image preprocessing and image understanding. Preprocessing includes: image manipulation; quality improvement; Threat Image Projection (TIP); and material discrimination and segmentation. Image understanding includes: Automated Threat Detection (ATD); and Automated Contents Verification (ACV). We identify several gaps in the literature that need to be addressed and propose ideas for future research. Where the current literature is sparse we borrow from the single-view, multi-view, and CT X-ray baggage domains, which have some characteristics in common with X-ray cargo

    ISGSR 2011 - Proceedings of the 3rd International Symposium on Geotechnical Safety and Risk

    Get PDF
    Scientific standards applicable to publication of BAWProceedings: http://izw.baw.de/publikationen/vzb_dokumente_oeffentlich/0/2020_07_BAW_Scientific_standards_conference_proceedings.pd
    • 

    corecore