74 research outputs found

    A study on the relationship between the intelligibility and quality of algorithmically-modified speech for normal hearing listeners

    Get PDF
    This study investigates the relationship between the intelligibility and quality of modified speech in noise and in quiet. Speech signals were processed by seven algorithms designed to increase speech intelligibility in noise without altering speech intensity. In three noise maskers, including both stationary and fluctuating noise at two signal-to-noise ratios (SNR), listeners identified keywords from unmodified or modified sentences. The intelligibility performance of each type of speech was measured as the listeners’ word recognition rate in each condition, while the quality was rated as a mean opinion score. In quiet, only the perceptual quality of each type of speech was assessed. The results suggest that when listening in noise, modification performance on improving intelligibility is more important than its potential negative impact on speech quality. However, when listening in quiet or at SNRs in which intelligibility is no longer an issue to listeners, the impact to speech quality due to modification becomes a concern

    Spatial hearing rendering in wireless microphone systems for binaural hearing aids

    Get PDF
    In 2015, 360 million people, including 32 million children, were suffering from hearing impairment all over the world. This makes hearing disability a major worldwide issue. In the US, the prevalence of hearing loss increased by 160% over the past generations. However, 72% of the 34 million impaired American persons (11% of the population) still have an untreated hearing loss. Among the various current solutions alleviating hearing disability, hearing aid is the only non-invasive and the most widespread medical apparatus. Combined with hearing aids, assisting listening devices are a powerful answer to address the degraded speech understanding observed in hearing-impaired subjects, especially in noisy and reverberant environments. Unfortunately, the conventional devices do not accurately render the spatial hearing property of the human auditory system, weakening their benefits. Spatial hearing is an attribute of the auditory system relying on binaural hearing. With 2 ears, human beings are able to localize sounds in space, to get information about the acoustic surroundings, to feel immersed in environments... Furthermore, it strongly contributes to speech intelligibility. It is hypothesized that recreating an artificial spatial perception through the hearing aids of impaired people might allow for recovering a part of these subjects' hearing performance. This thesis investigates and supports the aforementioned hypothesis with both technological and clinical approaches. It reveals how certain well-established signal processing methods can be integrated in some assisting listening devices. These techniques are related to sound localization and spatialization. Taking into consideration the technical constraints of current hearing aids, as well as the characteristics of the impaired auditory system, the thesis proposes a novel solution to restore a spatial perception for users of certain types of assisting listening devices. The achieved results demonstrate the feasibility and the possible implementation of such a functionality on conventional systems. Additionally, this thesis examines the relevance and the efficiency of the proposed spatialization feature towards the enhancement of speech perception. Via a clinical trial involving a large number of patients, the artificial spatial hearing shows to be well appreciated by disabled persons, while improving or preserving their current hearing abilities. This can be considered as a prominent contribution to the current scientific and technological knowledge in the domain of hearing impairment

    Ultra-high-speed imaging of bubbles interacting with cells and tissue

    Get PDF
    Ultrasound contrast microbubbles are exploited in molecular imaging, where bubbles are directed to target cells and where their high-scattering cross section to ultrasound allows for the detection of pathologies at a molecular level. In therapeutic applications vibrating bubbles close to cells may alter the permeability of cell membranes, and these systems are therefore highly interesting for drug and gene delivery applications using ultrasound. In a more extreme regime bubbles are driven through shock waves to sonoporate or kill cells through intense stresses or jets following inertial bubble collapse. Here, we elucidate some of the underlying mechanisms using the 25-Mfps camera Brandaris128, resolving the bubble dynamics and its interactions with cells. We quantify acoustic microstreaming around oscillating bubbles close to rigid walls and evaluate the shear stresses on nonadherent cells. In a study on the fluid dynamical interaction of cavitation bubbles with adherent cells, we find that the nonspherical collapse of bubbles is responsible for cell detachment. We also visualized the dynamics of vibrating microbubbles in contact with endothelial cells followed by fluorescent imaging of the transport of propidium iodide, used as a membrane integrity probe, into these cells showing a direct correlation between cell deformation and cell membrane permeability

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF
    • …
    corecore