118,159 research outputs found

    Interbasin Water Transfers and Water Scarcity in a Changing World: A Solution or a Pipedream?

    Get PDF
    The world is increasingly forced to face the challenge of how to ensure access to adequate water resources for expanding populations and economies, whilst maintaining healthy freshwater ecosystems and the vital services they provide. Now the growing impacts of climate change are exacerbating the problem of water scarcity in key regions of the world. One popular way for governments to distribute water more evenly across the landscape is to transfer it from areas with perceived surpluses, to those with shortages.While there is a long history of water transfers from ancient times, as many societies reach the limits of locally renewable water supplies increasingly large quantities of water are being moved over long distances, from one river basin to another. Since the beginning of dam building that marked the last half of the 1900s more that 364 large-scale interbasin water transfer schemes (IBTs) have been established that transfer around 400 kmÂł of water per year (Shiklomanov 1999). IBTs are now widely touted as the quick fix solution to meeting escalating water demands. One estimate suggests that the total number of largescale water transfer schemes may rise to between 760 and 1 240 by 2020 to transfer up to 800 kmÂł of water per year (Shiklomanov 1999).The wide range of IBT projects in place, or proposed, has provoked the preparation of this review, including seven case studies from around the globe. It builds on previous assessments and examines the costs and benefits of large scale IBTs. This report assesses related, emerging issues in sustaining water resources and ecosystems, namely the virtual water trade, expanding use of desalination, and climate change adaptation. It is based on WWF's 2007 publication "Pipedreams? Interbasin water transfers and water shortages".The report concludes that while IBTs can potentially solve water supply issues in regions of water shortage - they come with significant costs. Large scale IBTs are typically very high cost, and thus economically risky, and they usually also come with significant social and environmental costs; usually for both the river basin providing and the river basin receiving the water

    Production of Innovations within Farmer–Researcher Associations Applying Transdisciplinary Research Principles

    Get PDF
    Small-scale farmers in sub-Saharan West Africa depend heavily on local resources and local knowledge. Science-based knowledge is likely to aid decision-making in complex situations. In this presentation, we highlight a FiBL-coordinated research partnership between three national producer organisations and national agriculture research bodies in Mali, Burkina Faso, and Benin. The partnership seeks to compare conventional, GMObased, and organic cotton systems as regards food security and climate change

    THE ECONOMIC IMPACT OF THE SOUTH-NORTH WATER TRANSFER PROJECT IN CHINA: A COMPUTABLE GENERAL EQUILIBRIUM ANALYSIS

    Get PDF
    Water resources are unevenly spread in China. Especially the basins of the Yellow, Hui and Hai rivers in the North are rather dry. To increase the supply of water in these basins, the South-to-North Water Transfer project (SNWT) was launched. Using a computable general equilibrium model this study estimates the impact of the project on the economy of China and the rest of the world. We contrast three alternative groups of scenarios. All are directly concerned with the South-to-North water transfer project to increase water supply. In the first group of scenarios additional supply implies productivity gains. We call it the “non-market” solution. The second group of scenarios is called “market solution”. The market price for water adjusts such that supply and demand are equated again. In the third group of simulations the economic implications of China’s capital investment in infrastructure for the water South-North water transfer project is analyzed. Finally, the investment is combined with the increased capacity of water. If an increase in water supply in China leads to an increase in productivity of their water-intensive goods and services (non-market solution) this would result in a huge positive welfare effect from increased production and export. The effect on China’s welfare would still be positive, if a market for water would exist (market solution), but the world as a whole would lose. The negative effect for the rest of the world is largely explained by a deterioration of its terms-of-trade. Well functioning water markets in China are unlikely to exist.Computable General Equilibrium, South-North Water Transfer Project, Water Policy, Water Scarcity

    Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change

    Get PDF
    This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. The IPCC was jointly established in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), in particular to assess in a comprehensive, objective, and transparent manner all the relevant scientific, technical, and socioeconomic information to contribute in understanding the scientific basis of risk of human-induced climate change, the potential impacts, and the adaptation and mitigation options. Beginning in 1990, the IPCC has produced a series of Assessment Reports, Special Reports, Technical Papers, methodologies, and other key documents which have since become the standard references for policymakers and scientists.This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decisionmaking under uncertainty, analyzing response in the context of risk management. The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies

    Implications Of Bulk Water Transfer On Local Water Management Institutions: A Case Study of the Melamchi Water Supply Project in Nepal

    Get PDF
    To mitigate a drinking water crisis in Kathmandu valley, the Government of Nepal initiated the Melamchi Water Supply Project in 1997, which will divert water from the Melamchi River to Kathmandu city's water supply network. In the first phase, the Project will divert 170,000 cubic meters of water per day (at the rate of 1.97M3/sec), which will be tripled using the same infrastructure as city water demand increases in the future. The large scale transfer of water would have farreaching implications in both water supplying and receiving basins. This paper analyzes some of the major changes related to local water management and socioeconomics brought about by the Project and in particular the changes in the local water management institutions in the Melamchi basin. Our study shows that traditional informal water management institutions were effective in regulating present water use practices in the water supplying basin, but the situation will vastly change because of the scale of water transfer, and power inequity between the organized public sector on one side and dispersed and unorganized marginal water users on the other. The small scale of water usage and multiple informal arrangements at the local level have made it difficult for the local users and institutions to collectively bargain and negotiate with the central water transfer authority for a fair share of project benefits and compensation for the losses imposed on them. The process and scale of project compensation for economic losses and equity over resource use are at the heart of the concerns and debates about the Melamchi water transfer decision. The Project has planned for a one-time compensation package of about US$18 million for development infrastructure related investments and is planning to share about one percent of revenue generated from water use in the city with the supplying basin. The main issues here are what forms of water sharing governance, compensation packages, and water rights structures would emerge in relation to the project implementation and whether they are socially acceptable ensuring equitable distribution of the project benefits to all basin communities. In addition, these issues of the Melamchi project discussed in this paper are equally pertinent to other places where rural to urban water transfer projects are under discussion

    Valuing adaptation under rapid change

    Get PDF
    AbstractThe methods used to plan adaptation to climate change have been heavily influenced by scientific narratives of gradual change and economic narratives of marginal adjustments to that change. An investigation of the theoretical aspects of how the climate changes suggests that scientific narratives of climate change are socially constructed, biasing scientific narratives to descriptions of gradual as opposed rapid, non-linear change. Evidence of widespread step changes in recent climate records and in model projections of future climate is being overlooked because of this. Step-wise climate change has the potential to produce rapid increases in extreme events that can cross institutional, geographical and sectoral domains.Likewise, orthodox economics is not well suited to the deep uncertainty faced under climate change, requiring a multi-faceted approach to adaptation. The presence of tangible and intangible values range across five adaptation clusters: goods; services; capital assets and infrastructure; social assets and infrastructure; and natural assets and infrastructure. Standard economic methods have difficulty in giving adequate weight to the different types of values across these clusters. They also do not account well for the inter-connectedness of impacts and subsequent responses between agents in the economy. As a result, many highly-valued aspects of human and environmental capital are being overlooked.Recent extreme events are already pressuring areas of public policy, and national strategies for emergency response and disaster risk reduction are being developed as a consequence. However, the potential for an escalation of total damage costs due to rapid change requires a coordinated approach at the institutional level, involving all levels of government, the private sector and civil society.One of the largest risks of maladaptation is the potential for un-owned risks, as risks propagate across domains and responsibility for their management is poorly allocated between public and private interests, and between the roles of the individual and civil society. Economic strategies developed by the disaster community for disaster response and risk reduction provide a base to work from, but many gaps remain.We have developed a framework for valuing adaptation that has the following aspects: the valuation of impacts thus estimating values at risk, the evaluation of different adaptation options and strategies based on cost, and the valuation of benefits expressed as a combination of the benefits of avoided damages and a range of institutional values such as equity, justice, sustainability and profit.The choice of economic methods and tools used to assess adaptation depends largely on the ability to constrain uncertainty around problems (predictive uncertainty) and solutions (outcome uncertainty). Orthodox methods can be used where both are constrained, portfolio methodologies where problems are constrained and robust methodologies where solutions are constrained. Where both are unconstrained, process-based methods utilising innovation methods and adaptive management are most suitable. All methods should involve stakeholders where possible.Innovative processes methods that enable transformation will be required in some circumstances, to allow institutions, sectors and communities to prepare for anticipated major change.Please cite this report as: Jones, RN, Young, CK, Handmer, J, Keating, A, Mekala, GD, Sheehan, P 2013 Valuing adaptation under rapid change, National Climate Change Adaptation Research Facility, Gold Coast, pp. 192.The methods used to plan adaptation to climate change have been heavily influenced by scientific narratives of gradual change and economic narratives of marginal adjustments to that change. An investigation of the theoretical aspects of how the climate changes suggests that scientific narratives of climate change are socially constructed, biasing scientific narratives to descriptions of gradual as opposed rapid, non-linear change. Evidence of widespread step changes in recent climate records and in model projections of future climate is being overlooked because of this. Step-wise climate change has the potential to produce rapid increases in extreme events that can cross institutional, geographical and sectoral domains.Likewise, orthodox economics is not well suited to the deep uncertainty faced under climate change, requiring a multi-faceted approach to adaptation. The presence of tangible and intangible values range across five adaptation clusters: goods; services; capital assets and infrastructure; social assets and infrastructure; and natural assets and infrastructure. Standard economic methods have difficulty in giving adequate weight to the different types of values across these clusters. They also do not account well for the inter-connectedness of impacts and subsequent responses between agents in the economy. As a result, many highly-valued aspects of human and environmental capital are being overlooked.Recent extreme events are already pressuring areas of public policy, and national strategies for emergency response and disaster risk reduction are being developed as a consequence. However, the potential for an escalation of total damage costs due to rapid change requires a coordinated approach at the institutional level, involving all levels of government, the private sector and civil society.One of the largest risks of maladaptation is the potential for un-owned risks, as risks propagate across domains and responsibility for their management is poorly allocated between public and private interests, and between the roles of the individual and civil society. Economic strategies developed by the disaster community for disaster response and risk reduction provide a base to work from, but many gaps remain.We have developed a framework for valuing adaptation that has the following aspects: the valuation of impacts thus estimating values at risk, the evaluation of different adaptation options and strategies based on cost, and the valuation of benefits expressed as a combination of the benefits of avoided damages and a range of institutional values such as equity, justice, sustainability and profit.The choice of economic methods and tools used to assess adaptation depends largely on the ability to constrain uncertainty around problems (predictive uncertainty) and solutions (outcome uncertainty). Orthodox methods can be used where both are constrained, portfolio methodologies where problems are constrained and robust methodologies where solutions are constrained. Where both are unconstrained, process-based methods utilising innovation methods and adaptive management are most suitable. All methods should involve stakeholders where possible.Innovative processes methods that enable transformation will be required in some circumstances, to allow institutions, sectors and communities to prepare for anticipated major change

    The Economic Impact of the South-North Water Transfer Project in China: A Computable General Equilibrium Analysis

    Get PDF
    Water resources are unevenly spread in China. Especially the basins of the Yellow, Hui and Hai rivers in the North are rather dry. To increase the supply of water in these basins, the South-to-North Water Transfer project (SNWT) was launched. Using a computable general equilibrium model this study estimates the impact of the project on the economy of China and the rest of the world. We contrast three alternative groups of scenarios. All are directly concerned with the South-to-North water transfer project to increase water supply. In the first group of scenarios additional supply implies productivity gains. We call it the “non-market” solution. The second group of scenarios is called “market solution”. The market price for water adjusts such that supply and demand are equated again. In the third group of simulations the economic implications of China’s capital investment in infrastructure for the water South-North water transfer project is analyzed. Finally, the investment is combined with the increased capacity of water. If an increase in water supply in China leads to an increase in productivity of their water-intensive goods and services (non-market solution) this would result in a huge positive welfare effect from increased production and export. The effect on China’s welfare would still be positive, if a market for water would exist (market solution), but the world as a whole would lose. The negative effect for the rest of the world is largely explained by a deterioration of its terms-of-trade. Well functioning water markets in China are unlikely to exist.Computable General Equilibrium, South-North Water Transfer Project, Water Policy, Water Scarcity

    Support for Integrated Ecosystem Assessments of NOAA’s National Estuarine Research Reserves System (NERRS), Volume I: The Impacts of Coastal Development on the Ecology and Human Well-being of Tidal Creek Ecosystems of the US Southeast

    Get PDF
    A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages
    • 

    corecore