920 research outputs found

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Computer Science and Technology Series : XV Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC'09 was the fifteenth Congress in the CACIC series. It was organized by the School of Engineering of the National University of Jujuy. The Congress included 9 Workshops with 130 accepted papers, 1 main Conference, 4 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 5 courses. CACIC 2009 was organized following the traditional Congress format, with 9 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of three chairs of different Universities. The call for papers attracted a total of 267 submissions. An average of 2.7 review reports were collected for each paper, for a grand total of 720 review reports that involved about 300 different reviewers. A total of 130 full papers were accepted and 20 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI

    QoS monitoring in real-time streaming overlays based on lock-free data structures

    Get PDF
    AbstractPeer-to-peer streaming is a well-known technology for the large-scale distribution of real-time audio/video contents. Delay requirements are very strict in interactive real-time scenarios (such as synchronous distance learning), where playback lag should be of the order of seconds. Playback continuity is another key aspect in these cases: in presence of peer churning and network congestion, a peer-to-peer overlay should quickly rearrange connections among receiving nodes to avoid freezing phenomena that may compromise audio/video understanding. For this reason, we designed a QoS monitoring algorithm that quickly detects broken or congested links: each receiving node is able to independently decide whether it should switch to a secondary sending node, called "fallback node". The architecture takes advantage of a multithreaded design based on lock-free data structures, which improve the performance by avoiding synchronization among threads. We will show the good responsiveness of the proposed approach on machines with different computational capabilities: measured times prove both departures of nodes and QoS degradations are promptly detected and clients can quickly restore a stream reception. According to PSNR and SSIM, two well-known full-reference video quality metrics, QoE remains acceptable on receiving nodes of our resilient overlay also in presence of swap procedures

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    Sweet Streams are Made of This: The System Engineer's View on Energy Efficiency in Video Communications

    Full text link
    In recent years, the global use of online video services has increased rapidly. Today, a manifold of applications, such as video streaming, video conferencing, live broadcasting, and social networks, make use of this technology. A recent study found that the development and the success of these services had as a consequence that, nowadays, more than 1% of the global greenhouse-gas emissions are related to online video, with growth rates close to 10% per year. This article reviews the latest findings concerning energy consumption of online video from the system engineer's perspective, where the system engineer is the designer and operator of a typical online video service. We discuss all relevant energy sinks, highlight dependencies with quality-of-service variables as well as video properties, review energy consumption models for different devices from the literature, and aggregate these existing models into a global model for the overall energy consumption of a generic online video service. Analyzing this model and its implications, we find that end-user devices and video encoding have the largest potential for energy savings. Finally, we provide an overview of recent advances in energy efficiency improvement for video streaming and propose future research directions for energy-efficient video streaming services.Comment: 16 pages, 5 figures, accepted for IEEE Circuits and Systems Magazin

    Energy efficiency in content delivery networks

    Get PDF
    The increasing popularity of bandwidth-intensive video Internet services has positioned Content Distribution Networks (CDNs) in the limelight as the emerging provider platforms for video delivery. The goal of CDNs is to maximise the availability of content in the network while maintaining the quality of experience expected by users. This is a challenging task due to the scattered nature of video content sources and destinations. Furthermore, the high energy consumption associated with content distribution calls for developing energy-efficient solutions able to cater for the future Internet. This thesis addresses the problem of content placement and update while considering energy consumption in CDNs. First, this work contributed a new energy-efficient caching scheme that stores the most popular content at the edge of the core network and optimises the size of cached content to minimise energy usage. It takes into account the trend of daily traffic and recommends putting inactive segments of caches in sleep-mode during off-peak hours. Our results showed that power minimisation is achieved by deploying switch-off capable caches, and the trend of active cache segments over the time of day follows the trend of traffic. Second, the study explores different content popularity distributions and determines their influence on power consumption. The distribution of content popularity dictates the resultant cache hit ratio achieved by storing a certain number of videos. Therefore, it directly influences the power consumption of the cache. The evaluation results indicated that under video services where the popularity of content is very diverse, the optimum solution is to store the few most popular videos in caches. In contrast, when video popularities are similar, the most power efficient scheme is either to cache the whole library or to avoid caching completely depending on the size of the video library. Third, this thesis contributed an evaluation of the power consumption of the network under real world TV data and considering standard and high definition TV programmes. We proposed a cache replacement algorithm based on the predictable nature of TV viewings. The time-driven proactive cache replacement algorithm replaces cache contents several times a day to minimise power consumption. The algorithm achieves major power savings on top of the power reductions introduced by caching. CDNs are expected to continue to be the backbone for Internet video applications. This work has shown that storing the right amount of popular videos in core caches reduces from 42% to 72% of network power consumption considering a range of content popularity distributions. Maintaining up-to-date cache contents reduces up to 48% and 86% of power consumption considering fixed and sleep-mode capable caches, respectively. Reducing the energy consumption of CDNs provides a valuable contribution for future green video delivery

    Enabling customers engagement and collaboration for small and medium-sized enterprises in ubiquitous multi-channel ecosystems

    Get PDF
    Over the last few years, we have encountered an exponential growth in online communication opportunities. Organizations have more and more ways to connect and engage with their current or future customers. The existence of more opportunities in connecting to people can be both an enabler and a burden. Being present at a multitude of different channels requires the effective management of a very large number of adapted contents, formats, and interaction patterns fulfilling the communication and cooperation needs of distributed target groups. In this respect, we integrate existing fragmented communication and monitoring approaches into a full-fledged communication model as a basis for an adequate engagement approach. We describe applications of our approach in both the eTourism and manufacturing domain. In this paper, we introduce an approach that will enable communication, collaboration and value exchange of users through a multitude of online interaction possibilities based on the use of semantic technology. Finally, we also compare our approach with existing solutions with respect to the identified challenges in this subject.European Union (UE) EU FP7 284860 (MSEE

    Designing and prototyping WebRTC and IMS integration using open source tools

    Get PDF
    WebRTC, or Web Real-time Communications, is a collection of web standards that detail the mechanisms, architectures and protocols that work together to deliver real-time multimedia services to the web browser. It represents a significant shift from the historical approach of using browser plugins, which over time, have proven cumbersome and problematic. Furthermore, it adopts various Internet standards in areas such as identity management, peer-to-peer connectivity, data exchange and media encoding, to provide a system that is truly open and interoperable. Given that WebRTC enables the delivery of multimedia content to any Internet Protocol (IP)-enabled device capable of hosting a web browser, this technology could potentially be used and deployed over millions of smartphones, tablets and personal computers worldwide. This service and device convergence remains an important goal of telecommunication network operators who seek to enable it through a converged network that is based on the IP Multimedia Subsystem (IMS). IMS is an IP-based subsystem that sits at the core of a modern telecommunication network and acts as the main routing substrate for media services and applications such as those that WebRTC realises. The combination of WebRTC and IMS represents an attractive coupling, and as such, a protracted investigation could help to answer important questions around the technical challenges that are involved in their integration, and the merits of various design alternatives that present themselves. This thesis is the result of such an investigation and culminates in the presentation of a detailed architectural model that is validated with a prototypical implementation in an open source testbed. The model is built on six requirements which emerge from an analysis of the literature, including previous interventions in IMS networks and a key technical report on design alternatives. Furthermore, this thesis argues that the client architecture requires support for web-oriented signalling, identity and call handling techniques leading to a potential for IMS networks to natively support these techniques as operator networks continue to grow and develop. The proposed model advocates the use of SIP over WebSockets for signalling and DTLS-SRTP for media to enable one-to-one communication and can be extended through additional functions resulting in a modular architecture. The model was implemented using open source tools which were assembled to create an experimental network testbed, and tests were conducted demonstrating successful cross domain communications under various conditions. The thesis has a strong focus on enabling ordinary software developers to assemble a prototypical network such as the one that was assembled and aims to enable experimentation in application use cases for integrated environments

    Computer Science and Technology Series : XV Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC'09 was the fifteenth Congress in the CACIC series. It was organized by the School of Engineering of the National University of Jujuy. The Congress included 9 Workshops with 130 accepted papers, 1 main Conference, 4 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 5 courses. CACIC 2009 was organized following the traditional Congress format, with 9 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of three chairs of different Universities. The call for papers attracted a total of 267 submissions. An average of 2.7 review reports were collected for each paper, for a grand total of 720 review reports that involved about 300 different reviewers. A total of 130 full papers were accepted and 20 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI
    corecore