22,578 research outputs found

    A 3D image-based measurement approach for analysing dynamic foot posture and mobility

    Get PDF
    The original contribution achieved from this research was the development of a low-cost 3D high-accuracy photogrammetric technique for measuring dynamic changes in foot anthropometry during gait. In clinical settings, the approach of determining foot mobility is achieved through measuring changes in bone landmarks between the static unloaded foot and the static loaded foot. From previous reliability assessment tests, it was found that static clinical foot mobility assessments based on the dorsum bone as a point of landmark reference provides high levels of measurement reliability. However, the relationships between these static dorsum measurement techniques have not been assessed against dynamic dorsum measurements collected during foot mobility. In this thesis, two assessment techniques based on the dorsum as a point of reference; namely the Foot Mobility Magnitude (FMM) and Arch Height Index (AHI) were compared statically and dynamically. The purpose for this was to validate these static measurements against the actual foot mobility during dynamic activities. An imaging platform was developed which consisted of 12 video cameras synchronised with force plate data to continuously capture the foot during gait while simultaneously obtaining ground reaction force information. The developed system achieved measurement accuracies within 0.3 mm with high levels of measurement precisions and insignificant random and systematic errors. From the research study, it was found that the correlation between the static and dynamic FMM measurements was insignificant, whereas significant correlations were found between the static and dynamic AHI measurements. Agreements between the static and dynamic AHI measurements were higher when the dorsum measurements were normalised to the truncated foot length (AHI 1) than normalising the dorsum measurements to the total foot length (AHI 2). Another major finding from the research was the higher measurement correlations achieved when the dynamic FMM and AHI were assessed between heel-strike and mid-stance compared to between heel-strike and active propulsion. This indicates that measuring the static FMM and AHI between 10% WB and 50% WB instead of between 10% WB and 90% WB might lend better insight in determining the behaviour of the foot dynamically. The Foot Posture Index (FPI) was used to classify foot postures and the relationship between the FPI scores and the dynamic FMM and AHI were assessed. It was found that the FPI was significantly correlated to the AHI measures but no correlation was found between the FPI and the FMM. The highest correlation was found for AHI 1 at active propulsion where the FPI predicted 48.9% of the variation of the AHI 1. The only FPI classification criteria to have a significant influence on the AHI at heel-strike, mid-stance and active-propulsion was the congruence of the MLA with the highest prediction of 66.7% of the variation in the AHI 1 at heelstrike

    Earth orbital teleoperator system man-machine interface evaluation

    Get PDF
    The teleoperator system man-machine interface evaluation develops and implements a program to determine human performance requirements in teleoperator systems

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    Performance Measures to Assess Resiliency and Efficiency of Transit Systems

    Get PDF
    Transit agencies are interested in assessing the short-, mid-, and long-term performance of infrastructure with the objective of enhancing resiliency and efficiency. This report addresses three distinct aspects of New Jersey’s Transit System: 1) resiliency of bridge infrastructure, 2) resiliency of public transit systems, and 3) efficiency of transit systems with an emphasis on paratransit service. This project proposed a conceptual framework to assess the performance and resiliency for bridge structures in a transit network before and after disasters utilizing structural health monitoring (SHM), finite element (FE) modeling and remote sensing using Interferometric Synthetic Aperture Radar (InSAR). The public transit systems in NY/NJ were analyzed based on their vulnerability, resiliency, and efficiency in recovery following a major natural disaster

    Biomechanics

    Get PDF
    Biomechanics is a vast discipline within the field of Biomedical Engineering. It explores the underlying mechanics of how biological and physiological systems move. It encompasses important clinical applications to address questions related to medicine using engineering mechanics principles. Biomechanics includes interdisciplinary concepts from engineers, physicians, therapists, biologists, physicists, and mathematicians. Through their collaborative efforts, biomechanics research is ever changing and expanding, explaining new mechanisms and principles for dynamic human systems. Biomechanics is used to describe how the human body moves, walks, and breathes, in addition to how it responds to injury and rehabilitation. Advanced biomechanical modeling methods, such as inverse dynamics, finite element analysis, and musculoskeletal modeling are used to simulate and investigate human situations in regard to movement and injury. Biomechanical technologies are progressing to answer contemporary medical questions. The future of biomechanics is dependent on interdisciplinary research efforts and the education of tomorrow’s scientists

    Investigation of first ray mobility during gait by kinematic fluoroscopic imaging-a novel method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is often suggested that sagittal instability at the first tarso-metatarsal joint level is a primary factor for hallux valgus and that sagittal instability increases with the progression of the deformity. The assessment of the degree of vertical instability is usually made by clinical evaluation while any measurements mostly refer to a static assessment of medial ray mobility (i.e. the plantar/dorsal flexion in the sagittal plane). Testing methods currently available cannot attribute the degree of mobility to the corresponding anatomical joints making up the medial column of the foot. The aim of this study was to develop a technique which allows for a quantification of the in-vivo sagittal mobility of the joints of the medial foot column during the roll-over process under full weight bearing.</p> <p>Methods</p> <p>Mobility of first ray bones was investigated by dynamic distortion-free fluoroscopy (25 frames/s) of 14 healthy volunteers and 8 patients with manifested clinical instability of the first ray. A CAD-based evaluation method allowed the determination of mobility and relative displacements and rotations of the first ray bones within the sagittal plane during the stance phase of gait.</p> <p>Results</p> <p>Total flexion of the first ray was found to be 13.63 (SD 6.14) mm with the healthy volunteers and 13.06 (SD 8.01) mm with the patients (resolution: 0.245 mm/pixel). The dorsiflexion angle was 5.27 (SD 2.34) degrees in the healthy volunteers and increased to 5.56 (SD 3.37) degrees in the patients. Maximum rotations were found at the naviculo-cuneiform joints and least at the first tarso-metatarsal joint level in both groups.</p> <p>Conclusions</p> <p>Dynamic fluoroscopic assessment has been shown to be a valuable tool for characterisation of the kinematics of the joints of the medial foot column during gait.</p> <p>A significant difference in first ray flexion and angular rotation between the patients and healthy volunteers however could not be found.</p

    A review of the effectiveness of lower limb orthoses used in cerebral palsy

    Get PDF
    To produce this review, a systematic literature search was conducted for relevant articles published in the period between the date of the previous ISPO consensus conference report on cerebral palsy (1994) and April 2008. The search terms were 'cerebral and pals* (palsy, palsies), 'hemiplegia', 'diplegia', 'orthos*' (orthoses, orthosis) orthot* (orthotic, orthotics), brace or AFO

    A 3D Spine and Full Skeleton Model for Opto-Electronic Stereo- Photogrammetric Multi-Sensor Biomechanical Analysis in Posture and Gait

    Get PDF
    Quantitative functional evaluation of spine is highly desirable in posture and movement analysis. Given the complexity of the spine biomechanical system, very few studies outline the behaviour of the spine in posture and movement analysis. During a research lasting 25 years, a complete three‐dimensional (3D) parametric biomechanical skeleton model including a 3D full spine model based on the measurements of the positions of suitable body landmarks labelled by passive markers has been implemented. Around this model, a fully dedicated 3D opto‐electronic stereo‐photogrammetric system named Global Opto‐electronic Approach for Locomotion and Spine (GOALS) has been developed. Depending on different analysis purposes, the model can work at different stages of complexity. The model can integrate seamlessly data deriving from multiple measurement devices, such as 3D stereo‐photogrammetric systems, force platforms, surface electro‐myography and foot pressure maps. In addition to single‐trial analysis, the possibility to assess and to extract mean behaviours either for posture or for cyclical tasks (e.g. multiple strides in gait) has been included. The aim of this paper is to describe the current level of development of the GOALS system and its versatility as a clinical tool. To this purpose, examples of multi‐factorial quantitative functional descriptions of paradigmatic cases are presented
    • 

    corecore