12,430 research outputs found

    A hypothesis on improving foreign accents by optimizing variability in vocal learning brain circuits

    Get PDF
    Rapid vocal motor learning is observed when acquiring a language in early childhood, or learning to speak another language later in life. Accurate pronunciation is one of the hardest things for late learners to master and they are almost always left with a non-native accent. Here I propose a novel hypothesis that this accent could be improved by optimizing variability in vocal learning brain circuits during learning. Much of the neurobiology of human vocal motor learning has been inferred from studies on songbirds. Jarvis (2004) proposed the hypothesis that as in songbirds there are two pathways in humans: one for learning speech (the striatal vocal learning pathway), and one for production of previously learnt speech (the motor pathway). Learning new motor sequences necessary for accurate non-native pronunciation is challenging and I argue that in late learners of a foreign language the vocal learning pathway becomes inactive prematurely. The motor pathway is engaged once again and learners maintain their original native motor patterns for producing speech, resulting in speaking with a foreign accent. Further, I argue that variability in neural activity within vocal motor circuitry generates vocal variability that supports accurate non-native pronunciation. Recent theoretical and experimental work on motor learning suggests that variability in the motor movement is necessary for the development of expertise. I propose that there is little trial-by-trial variability when using the motor pathway. When using the vocal learning pathway variability gradually increases, reflecting an exploratory phase in which learners try out different ways of pronouncing words, before decreasing and stabilizing once the ‘best’ performance has been identified. The hypothesis proposed here could be tested using behavioral interventions that optimize variability and engage the vocal learning pathway for longer, with the prediction that this would allow learners to develop new motor patterns that result in more native-like pronunciation

    Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed

    Get PDF
    The motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages. Part 1 places the motor theory of speech perception in a larger framework based on our earlier models of the adaptive formation of mirror neurons for grasping, and for viewing extensions of that mirror system as part of a larger system for neuro-linguistic processing, augmented by the present consideration of recognizing speech in a novel accent. Part 2 then offers a novel computational model of how a listener comes to understand the speech of someone speaking the listener's native language with a foreign accent. The core tenet of the model is that the listener uses hypotheses about the word the speaker is currently uttering to update probabilities linking the sound produced by the speaker to phonemes in the native language repertoire of the listener. This, on average, improves the recognition of later words. This model is neutral regarding the nature of the representations it uses (motor vs. auditory). It serve as a reference point for the discussion in Part 3, which proposes a dual-stream neuro-linguistic architecture to revisits claims for and against the motor theory of speech perception and the relevance of mirror neurons, and extracts some implications for the reframing of the motor theory

    Assessing the impact of emotion in dual pathway models of sensory processing.

    Get PDF
    In our daily environment, we are constantly encountering an endless stream of information which we must be able to sort and prioritize. Some of the features that influence this are the emotional nature of stimuli and the emotional context of events. Emotional information is often given preferential access to neurocognitive resources, including within sensory processing systems. Interestingly, both auditory and visual systems are divided into dual processing streams; a ventral object identity/perception stream and a dorsal object location/action stream. While effects of emotion on the ventral streams are relatively well defined, its effect on dorsal stream processes remains unclear. The present thesis aimed to investigate the impact of emotion on sensory systems within a dual pathway framework of sensory processing. Study I investigated the role of emotion during auditory localization. While undergoing fMRI, participants indicated the location of an emotional or non-emotional sound within an auditory virtual environment. This revealed that the neurocognitive structures displaying activation modulated by emotion were not the same as those modulated by sound location. Emotion was represented in regions associated with the putative auditory ‘what’ but not ‘where’ stream. Study II examined the impact of emotion on ostensibly similar localization behaviours mediated differentially by the dorsal versus ventral visual processing stream. Ventrally-mediated behaviours were demonstrated to be impacted by the emotional context of a trial, while dorsally-mediated behaviours were not. For Study III, a motion-aftereffect paradigm was used to investigate the impact of emotion on visual area V5/MT+. This area, traditionally believed to be involved in dorsal stream processing, has a number of characteristics similar to a ventral stream structure. It was discovered that V5/MT+ activity was modulated both by presence of perceptual motion and emotional content of an image. In addition, this region displayed patterns of functional connectivity with the amygdala that were significantly modulated by emotion. Together, these results suggest that emotional information modulates neural processing within ventral sensory processing streams, but not dorsal processing streams. These findings are discussed with respect to current models of emotional and sensory processing, including amygdala connections to sensory cortices and emotional effects on cognition and behaviour

    A method for determining venous contribution to BOLD contrast sensory activation

    Get PDF
    While BOLD contrast reflects haemodynamic changes within capillaries serving neural tissue, it also has a venous component. Studies that have determined the relation of large blood vessels to the activation map indicate that veins are the source of the largest response, and the most delayed in time. It would be informative if the location of these large veins could be extracted from the properties of the functional responses, since vessels are not visible in BOLD contrast images. The present study describes a method for investigating whether measures taken from the functional response can reliably predict vein location, or at least be useful in down-weighting the venous contribution to the activation response, and illustrates this method using data from one subject. We combined fMRI at 3 Tesla with high-resolution anatomical imaging and MR venography to test whether the intrinsic properties of activation time courses corresponded to tissue type. Measures were taken from a gamma fit to the functional response. Mean magnitude showed a significant effect of tissue type (P veins ≈ grey matter > white matter. Mean delays displayed the same ranking across tissue types (P grey matter. However, measures for all tissue types were distributed across an overlapping range. A logistic regression model correctly discriminated 72% of the veins from grey matter in the absence of independent information of macroscopic vessels (ROC=0.72). Whilst tissue classification was not perfect for this subject, weighting the T contrast by the predicted probabilities materially reduced the venous component to the activation map

    Tri puta obrade slušnih podražaja: novi "gating put" izravno povezuje primarna osjetna područja s izvršnim prefrontalnim korteksom

    Get PDF
    The generally accepted model of sensory processing of visual and auditory stimuli assumes two major parallel processing streams, ventral and dorsal, which comprise functionally and anatomically distinct but interacting processes in which the ventral stream supports stimulus identification, and the dorsal stream is involved in recognizing the stimulus spatial location and sensori-motor integration functions. However, recent studies suggest the existence of a third, very fast sensory processing pathway, a gating stream that directly links the primary auditory cortices to the executive prefrontal cortex within the first 50 milliseconds after presentation of a stimulus, bypassing hierarchical structure of the ventral and dorsal pathways. Gating stream propagates the sensory gating phenomenon, which serves as a basic protective mechanism preventing irrelevant, repeated information from recurrent sensory processing. The goal of the present paper is to introduce the novel ‘three-stream’ model of auditory processing, including the new fast sensory processing stream, i.e. gating stream, alongside the well-affirmed dorsal and ventral sensory processing pathways. The impairments in sensory processing along the gating stream have been found to be strongly involved in the pathophysiological sensory processing in Alzheimer’s disease and could be the underlying issue in numerous neuropsychiatric disorders and diseases that are linked to the pathological sensory gating inhibition, such as schizophrenia, post-traumatic stress disorder, bipolar disorder or attention deficit hyperactivity disorder.Trenutno prihvaćeni model obrade vidnih i slušnih podražaja unutar velikog mozga pretpostavlja dva velika usporedna osjetna puta, ventralni i dorzalni, koji obuhvaćaju funkcionalno i anatomski različite, ali ne i međusobno isključive mehanizme kojima se obrađuju pojedina svojstva osjetne informacije. Ventralni put ima ključnu ulogu u identifikaciji sadržaja informacije, dok je dorzalni prvenstveno uključen u prostornu lokalizaciju izvora podražaja i percepciju kretanja. Međutim, nova neurofiziološka istraživanja ukazuju na postojanje trećeg, vrlo brzog puta procesiranja podražaja, “gating puta” koji izravno povezuje primarna osjetna područja s prefrontalnim dijelovima moždane kore već unutar prvih 50 milisekunda od izlaganja podražaju, na taj način zaobilazeći hijearhijski ustroj dorzalnog i ventralnog puta. Gating put omogućava brzo generiranje osjetnog gating efekta koji služi kao temeljni, pred-perceptivni zaštitni mehanizam s ulogom sprječavanja opetovane obrade ponovljene i/ili nevažne osjetne informacije. Namjera ovoga preglednog rada je predstavljanje novog “trostrukog modela” paralelnih putova obrade osjetnih informacija uvođenjem trećeg, vrlo brzog puta, gating puta, uz dva klinički već široko prihvaćena, ventralni i dorzalni. O kliničkoj važnosti novoga gating puta svjedoče najnoviji rezultati koji pokazuju da su poremećaji u gating procesiranju duž novoga osjetnog puta ključni u otkrivanju Alzheimerove bolesti, s potencijalom da otkriju neurofiziološke znakove bolesti i u predkliničkoj fazi. Patološke promjene u osjetnom procesiranju duž novootkrivenoga gating puta mogli bi biti uzroci niza neuropsiholoških i neuroloških bolesti i stanja koja su vezana uz promjene u inhibiciji neuralnog odgovora na ponovljeni podražaj (gating poremećaj), poput shizofrenije, poslijetraumatskog stresnog poremećaja ili poremećaja hiperaktivnosti i deficita pažnje

    “What” and “Where” in Auditory Sensory Processing: A High-Density Electrical Mapping Study of Distinct Neural Processes Underlying Sound Object Recognition and Sound Localization

    Get PDF
    Functionally distinct dorsal and ventral auditory pathways for sound localization (WHERE) and sound object recognition (WHAT) have been described in non-human primates. A handful of studies have explored differential processing within these streams in humans, with highly inconsistent findings. Stimuli employed have included simple tones, noise bursts, and speech sounds, with simulated left–right spatial manipulations, and in some cases participants were not required to actively discriminate the stimuli. Our contention is that these paradigms were not well suited to dissociating processing within the two streams. Our aim here was to determine how early in processing we could find evidence for dissociable pathways using better titrated WHAT and WHERE task conditions. The use of more compelling tasks should allow us to amplify differential processing within the dorsal and ventral pathways. We employed high-density electrical mapping using a relatively large and environmentally realistic stimulus set (seven animal calls) delivered from seven free-field spatial locations; with stimulus configuration identical across the “WHERE” and “WHAT” tasks. Topographic analysis revealed distinct dorsal and ventral auditory processing networks during the WHERE and WHAT tasks with the earliest point of divergence seen during the N1 component of the auditory evoked response, beginning at approximately 100 ms. While this difference occurred during the N1 timeframe, it was not a simple modulation of N1 amplitude as it displayed a wholly different topographic distribution to that of the N1. Global dissimilarity measures using topographic modulation analysis confirmed that this difference between tasks was driven by a shift in the underlying generator configuration. Minimum-norm source reconstruction revealed distinct activations that corresponded well with activity within putative dorsal and ventral auditory structures

    Location-independent and location-linked representations of sound objects.

    Get PDF
    For the recognition of sounds to benefit perception and action, their neural representations should also encode their current spatial position and their changes in position over time. The dual-stream model of auditory processing postulates separate (albeit interacting) processing streams for sound meaning and for sound location. Using a repetition priming paradigm in conjunction with distributed source modeling of auditory evoked potentials, we determined how individual sound objects are represented within these streams. Changes in perceived location were induced by interaural intensity differences, and sound location was either held constant or shifted across initial and repeated presentations (from one hemispace to the other in the main experiment or between locations within the right hemispace in a follow-up experiment). Location-linked representations were characterized by differences in priming effects between pairs presented to the same vs. different simulated lateralizations. These effects were significant at 20-39 ms post-stimulus onset within a cluster on the posterior part of the left superior and middle temporal gyri; and at 143-162 ms within a cluster on the left inferior and middle frontal gyri. Location-independent representations were characterized by a difference between initial and repeated presentations, independently of whether or not their simulated lateralization was held constant across repetitions. This effect was significant at 42-63 ms within three clusters on the right temporo-frontal region; and at 165-215 ms in a large cluster on the left temporo-parietal convexity. Our results reveal two varieties of representations of sound objects within the ventral/What stream: one location-independent, as initially postulated in the dual-stream model, and the other location-linked
    corecore