291 research outputs found

    Phenological corrections to a field-scale, ET-based crop stress indicator: An application to yield forecasting across the U.S. Corn Belt

    Get PDF
    Soil moisture deficiency is a major factor in determining crop yields in water-limited agricultural production regions. Evapotranspiration (ET), which consists of crop water use through transpiration and water loss through direct soil evaporation, is a good indicator of soil moisture availability and vegetation health. ET therefore has been an integral part of many yield estimation efforts. The Evaporative Stress Index (ESI) is an ET-based crop stress indicator that describes temporal anomalies in a normalized evapotranspiration metric as derived from satellite remote sensing. ESI has demonstrated the capacity to explain regional yield variability in water-limited regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded due to interannual phenological variability. This investigation selected three study sites across the U.S. Corn Belt – Mead, NE, Ames, IA and Champaign, IL – to investigate the potential operational value of 30-m resolution, phenologically corrected ESI datasets for yield prediction. The analysis was conducted over an 8-year period from 2010 to 2017, which included both drought and pluvial conditions as well as a broad range in yield values. Detrended yield anomalies for corn and soybean were correlated with ESI computed using annual ET curves temporally aligned based on (1) calendar date, (2) crop emergence date, and (3) a growing degree day (GDD) scaled time axis. Results showed that ESI has good correlations with yield anomalies at the county scale and that phenological corrections to the annual temporal alignment of the ET timeseries improve the correlation, especially when the time axis is defined by GDD rather than the calendar date. Peak correlations occur in the silking stage for corn and the reproductive stage for soybean – phases when these crops are particularly sensitive to soil moisture deficiencies. Regression equations derived at the time of peak correlation were used to estimate yields at county scale using a leave-one-out cross-validation strategy. The ESI-based yield estimates agree well with the USDA National Agricultural Statistics Service (NASS) county-level crop yield data, with correlation coefficients ranging from 0.79 to 0.93 and percent root-mean-square errors of 5–8%. These results demonstrate that remotely sensed ET at high spatiotemporal resolution can convey valuable water stress information for forecasting crop yields across the Corn Belt if interannual phenological variability is considered

    Field-scale mapping of evaporative stress indicators of crop yield: An application over Mead, NE, USA

    Get PDF
    The Evaporative Stress Index (ESI) quantifies temporal anomalies in a normalized evapotranspiration (ET) metric describing the ratio of actual-to-reference ET (fRET) as derived from satellite remote sensing. At regional scales (3–10 km pixel resolution), the ESI has demonstrated the capacity to capture developing crop stress and impacts on regional yield variability in water-limited agricultural regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded due to spatial and temporal limitations in the standard ESI products. In this study, we investigated potential improvements to ESI by generating maps of ET, fRET, and fRET anomalies at high spatiotemporal resolution (30-m pixels, daily time steps) using a multi-sensor data fusion method, enabling separation of landcover types with different phenologies and resilience to drought. The study was conducted for the period 2010–2014 covering a region around Mead, Nebraska that includes both rainfed and irrigated crops. Correlations between ESI and measurements of maize yield were investigated at both the field and county level to assess the potential of ESI as a yield forecasting tool. To examine the role of crop phenology in yield-ESI correlations, annual input fRET time series were aligned by both calendar day and by biophysically relevant dates (e.g. days since planting or emergence). At the resolution of the operational U.S. ESI product (4 km), adjusting fRET alignment to a regionally reported emergence date prior to anomaly computation improves r2 correlations with county-level yield estimates from 0.28 to 0.80. At 30-m resolution, where pure maize pixels can be isolated from other crops and landcover types, county-level yield correlations improved from 0.47 to 0.93 when aligning fRET by emergence date rather than calendar date. Peak correlations occurred 68 days after emergence, corresponding to the silking stage for maize when grain development is particularly sensitive to soil moisture deficiencies. The results of this study demonstrate the utility of remotely sensed ET in conveying spatially and temporally explicit water stress information to yield prediction and crop simulation models

    Crop modeling for assessing and mitigating the impacts of extreme climatic events on the US agriculture system

    Get PDF
    The US agriculture system is the world’s largest producer of maize and soybean, and typically supplies more than one-third of their global trading. Nearly 90% of the US maize and soybean production is rainfed, thus is susceptible to climate change stressors such as heat waves and droughts. Process-based crop and cropping system models are important tools for climate change impact assessments and risk management. As data- science is becoming a new frontier for agriculture growth, the incoming decade calls for operational platforms that use hyper-local growth monitoring, high-resolution real-time weather and satellite data assimilation and cropping system modeling to help stakeholders predict crop yields and make decisions at various spatial scales. The fundamental question addressed by this dissertation is: How crop and cropping system models can be “useful” to the agriculture production, given the recent advent of cloud computing and earth observatory power? This dissertation consists of four main chapters. It starts with a study that reviews the algorithms of simulating heat and drought stress on maize in 16 major crop models, and evaluates algorithm performances by incorporating these algorithms into the Agricultural Production Systems sIMulator (APSIM) and running an ensemble of simulations at typical farms from the US Midwest. Results show that current parameterizations in most models favor the use of daylight temperature even though the algorithm was designed for using daily mean temperature. Different drought algorithms considerably differed in their patterns of water shortage over the growing season, but nonetheless predicted similar decreases in annual yield. In the next chapter of climate change assessment study, I quantify the current and future yield responses of US rainfed maize and soybean to climate extremes with and without considering the effect of elevated atmospheric CO2concentrations, and for the first time characterizes spatial shifts in the relative importance of temperature, heat and drought stresses. Model simulations demonstrate that drought will continue to be the largest threat to rainfed maize and soybean production, yet shifts in the spatial pattern of dominant stressors are characterized by increases in the concurrent stress, indicating future adaptation strategies will have trade-offs between multiple objectives. Following this chapter, I presented a chapter that uses billion-scale simulations to identify the optimal combination of Genotype × Environment × Management for the purpose of minimizing the negative impact of climate extremes on the rainfed maize yield. Finally, I present a prototype of crop model and satellite imagery based within-field scale N sidedress prescription tool for the US rainfed maize system. As an early attempt to integrate advances in multiple areas for precision agriculture, this tool successfully captures the subfield variability of N dynamics and gives reasonable spatially explicit sidedress N recommendations. The prescription enhances zones with high yield potentials, while prevents over-fertilization at zones with low yield potentials

    Characterizing Spatiotemporal Patterns of White Mold in Soybean across South Dakota Using Remote Sensing

    Get PDF
    Soybean is among the most important crops, cultivated primarily for beans, which are used for food, feed, and biofuel. According to FAO, the United States was the biggest soybeans producer in 2016. The main soybean producing regions in the United States are the Corn Belt and the lower Mississippi Valley. Despite its importance, soybean production is reduced by several diseases, among which Sclerotinia stem rot, also known as white mold, a fungal disease that is caused by the fungus Sclerotinia sclerotiorum is among the top 10 soybean diseases. The disease may attack several plants and considerably reduce yield. According to previous reports, environmental conditions corresponding to high yield potential are most conducive for white mold development. These conditions include cool temperature (12-24 °C), continued wet and moist conditions (70-120 h) generally resulting from rain, but the disease development requires the presence of a susceptible soybean variety. To better understand white mold development in the field, there is a need to investigate its spatiotemoral characteristics and provide accurate estimates of the damages that white mold may cause. Current and accurate data about white mold are scarce, especially at county or larger scale. Studies that explored the characteristics of white mold were generally field oriented and local in scale, and when the spectral characteristics were investigated, the authors used spectroradiometers that are not accessible to farmers and to the general public and are mostly used for experimental modeling. This study employed free remote sensing Landsat 8 images to quantify white mold in South Dakota. Images acquired in May and July were used to map the land cover and extract the soybean mask, while an image acquired in August was used to map and quantify white mold using the random forest algorithm. The land cover map was produced with an overall accuracy of 95% while white mold was mapped with an overall accuracy of 99%. White mold area estimates were respectively 132 km2, 88 km2, and 190 km2, representing 31%, 22% and 29% of the total soybean area for Marshall, Codington and Day counties. This study also explored the spatial characteristics of white mold in soybean fields and its impact on yield. The yield distribution exhibited a significant positive spatial autocorrelation (Moran’s I = 0.38, p-value \u3c 0.001 for Moody field, Moran’s I = 0.45, p-value \u3c 0.001, for Marshall field) as an evidence of clustering. Significant clusters could be observed in white mold areas (low-low clusters) or in healthy soybeans (high-high clusters). The yield loss caused by the worst white mold was estimated at 36% and 56% respectively for the Moody and the Marshall fields, with the most accurate loss estimation occurring between late August and early September. Finally, this study modeled the temporal evolution of white mold using a logistic regression analysis in which the white mold was modeled as a function of the NDVI. The model was successful, but further improved by the inclusion of the Day of the Year (DOY). The respective areas under the curves (AUC) were 0.95 for NDVI and 0.99 for NDVI+DOY models. A comparison of the NDVI temporal change between different sites showed that white mold temporal development was affected by the site location, which could be influenced by many local parameters such as the soil properties, the local elevation, management practices, or weather parameters. This study showed the importance of freely available remotely sensed satellite images in the estimation of crop disease areas and in the characterization of the spatial and temporal patterns of crop disease; this could help in timely disease damage assessment

    Utilizing Collocated Crop Growth Model Simulations to Train Agronomic Satellite Retrieval Algorithms

    Full text link
    Due to its worldwide coverage and high revisit time, satellite-based remote sensing provides the ability to monitor in-season crop state variables and yields globally. In this study, we presented a novel approach to training agronomic satellite retrieval algorithms by utilizing collocated crop growth model simulations and solar-reflective satellite measurements. Specifically, we showed that bidirectional long short-term memory networks (BLSTMs) can be trained to predict the in-season state variables and yields of Agricultural Production Systems sIMulator (APSIM) maize crop growth model simulations from collocated Moderate Resolution Imaging Spectroradiometer (MODIS) 500-m satellite measurements over the United States Corn Belt at a regional scale. We evaluated the performance of the BLSTMs through both k-fold cross validation and comparison to regional scale ground-truth yields and phenology. Using k-fold cross validation, we showed that three distinct in-season maize state variables (leaf area index, aboveground biomass, and specific leaf area) can be retrieved with cross-validated R2 values ranging from 0.4 to 0.8 for significant portions of the season. Several other plant, soil, and phenological in-season state variables were also evaluated in the study for their retrievability via k-fold cross validation. In addition, by comparing to survey-based United State Department of Agriculture (USDA) ground truth data, we showed that the BLSTMs are able to predict actual county-level yields with R2 values between 0.45 and 0.6 and actual state-level phenological dates (emergence, silking, and maturity) with R2 values between 0.75 and 0.85. We believe that a potential application of this methodology is to develop satellite products to monitor in-season field-scale crop growth on a global scale by reproducing the methodology with field-scale crop growth model simulations (utilizing farmer recorded field-scale agromanagement data) and collocated high-resolution satellite data (fused with moderate-resolution satellite data)

    Quantifying the Impacts of Land Use, Management and Climate Change on Water Resources in Missouri River Basin

    Get PDF
    A location-specific evaluation of hydrological landscape responses concerning past and projected climate and land use land cover (LULC) changes can provide a powerful intellectual basis for developing efficient and profitable agroecosystems, and overcoming uncertain and detrimental consequences of LULC and climate shifts. This dissertation assessed the impacts of land use, management, and climate change on water resources in the Missouri River Basin (MRB) through four specific studies that included: (i) to study the responses of leached nutrient concentrations and soil health to winter rye cover crop (CC) under no-till corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation, (ii) to simulate hydrological responses of integrated crop-livestock (ICL) system under projected climate changes in an agricultural watershed, (iii) to evaluate the hydrological landscape responses in relation to past (1986-2018) LULC and climate shifts across South Dakota (SD), and (iv) to evaluate the hydrological landscape responses in relation to past (1986-2018) LULC and climate shifts across MRB. Cover cropping has been promoted for the ecological agricultural intensification, however, the vulnerability of CC establishment and expected soil health and water quality benefits under short and cold growing periods for CC are of concerns among producers in the northern Great Plains (NGP) region. Thus, a field experiment from 2017 to 2020 was conducted to assess the impacts of winter rye (Secale cereale L.) CC on soil health and water quality parameters under a no-till corn-soybean rotation at Southeast Research Farm (SERF), Beresford, SD. Interestingly, the study site faced one dry (2020) and two abnormally wet (2018 and 2019) years which received 31% lower (2020), and 31% (2018) and 23% (2019) higher precipitation, respectively, than the annual average (1953-2019). Data showed that biomass of the rye CC was 251 kg ha-1 in 2018, 1213 kg ha-1 in 2019, and 147 kg ha-1 in 2020, coinciding with contrasting growing degree days i.e., 1458, 2042, 794, respectively, as a consequence of variable weather conditions. Cover cropping did not impact water quality for the majority of the study period. However, a significant reduction in leached nitrate (~19-20%) and total nitrogen (TN) (~8.5-16%) concentrations were found only in 2019, pertaining to sequestered 18.8 kg N ha-1. Rye CC showed 13 and 11% significantly higher microbially active carbon and water-extractable organic nitrogen, respectively, than the control (No CC) treatment. The non-significant impacts on soil health indicators due to winter rye showed that study duration (3 years) may not be sufficient to see the beneficial impacts of cover crop on soils. However, significant reductions in leached nitrate and TN concentrations for one (2019) out of three study years suggest that well-established rye CC (biomass = 1213 kg ha-1; which was 4.8 and 8.3 times higher than that in 2018 and 2020) has the potential of reducing nutrient leaching and enhancing soil health for the study region. The ICL systems, when well managed properly, have beneficial impacts on soils and water yield, however, very limited studies are available due to the complexity of these integrated systems. Thus, a simulation study was conducted to assess the hydrological impacts of long-term implementation of ICL systems at watershed scale with the projected climate scenarios on water yield using the Soil and Water Assessment Tool (SWAT) model over two time periods [i.e. Near Future (2021-2050) and Far Future (2070-2099)]. This study was conducted in three phases over Skunk Creek Watershed (SCW), SD, USA. In phase I, the impact of long-term ICL system implementation (1976- 2005; 30 years) on soil hydrology was evaluated. Phase II and phase III evaluated the impacts of projected climate changes under existing land cover and ICL system, respectively. Outcomes of phase I showed a significant decrease in water yield and surface runoff. Phase II showed the susceptibility of SCW to extreme events such as floods and waterlogging during spring, and droughts during summers under the projected climate changes. Phase III showed the reduction in water yield and surface runoff due to the ICL system and minimizing the induced detrimental impacts only due to climate change. Evapotranspiration (ET) plays a significant role in crop growth and development, therefore, an accurate estimation of ET is very important for water use and availability. The past hydrological landscape responses were studied using well-validated (r2 = 0.91, PBIAS= -4%, and %RMSE = 11.8%) actual evapotranspiration (ETa) time-series (1986- 2018) estimations. The developed ETa products were further used to understand the crop water-use (CWU) characteristics and existing historic mono-directional (increasing or decreasing) trends across the SD and MRB regions. Spatial variability of the Operational Simplified Surface Energy Balance (SSEBop) model- and Landsat-based ETa estimations showed strong correspondence with land cover and climate across the basin. The drier foothills in northwestern MRB, dominated by grassland/shrubland, showed lower ETa (\u3c 400 mm/year), whereas, cropland dominated regions in lower semi-humid MRB and forested headwater exhibited higher ETa (\u3e 500 mm/year). For the SD region, Mann Kendall trend analysis revealed an absence of a significant trend in annual CWU at a regional scale due to the combined impact of varying weather conditions, and the presence of both increasing (12%) and decreasing (9%) CWU trends over a substantial portion at the pixel-scale. Whereas, for the MRB, summer season CWU trend analysis revealed a significant increasing trend at the regional-scale with 30% MRB cropland pixels under a significant increasing trend at pixel-scale. The existing increasing trends can be explained by the shift in agricultural practices, increased irrigated cropland area, higher productions, moisture regime shifts, and decreased risk of farming in the dry areas. Moreover, the decreasing trend pixels could be the result of the dynamic conversion of wetlands to croplands, decreased and improved irrigation and water management practices in the region. Overall, both studies highlight the potential of Landsat imagery and remote sensing-based ETa modeling approaches in generating historical time-series ETa maps over a wide range of elevation, vegetation, and climate

    Assessing multiple years' spatial variability of crop yields using satellite vegetation indices

    Get PDF
    Assessing crop yield trends over years is a key step in site specific management, in view of improving the economic and environmental profile of agriculture. This study was conducted in a 11.07 ha area under Mediterranean climate in Northern Italy to evaluate the spatial variability and the relationships between six remotely sensed vegetation indices (VIs) and grain yield (GY) in five consecutive years. A total of 25 satellite (Landsat 5, 7, and 8) images were downloaded during crop growth to obtain the following VIs: Normalized Dierence Vegetation Index (NDVI), EnhancedVegetation Index (EVI), Soil AdjustedVegetation Index (SAVI), Green Normalized Dierence Vegetation Index (GNDVI), Green Chlorophyll Index (GCI), and Simple Ratio (SR). The surveyed crops were durum wheat in 2010, sunflower in 2011, bread wheat in 2012 and 2014, and coriander in 2013. Geo-referenced GY and VI data were used to generate spatial trend maps across the experimental field through geostatistical analysis. Crop stages featuring the best correlations between VIs and GY at the same spatial resolution (30 m) were acknowledged as the best periods for GY prediction. Based on this, 2\u20134 VIs were selected each year, totalling 15 VIs in the five years with r values with GY between 0.729** and 0.935**. SR and NDVI were most frequently chosen (six and four times, respectively) across stages from mid vegetative to mid reproductive growth. Conversely, SAVI never had correlations high enough to be selected. Correspondence analysis between remote VIs and GY based on quantile ranking in the 126 (30 m size) pixels exhibited a final agreement between 64% and 86%. Therefore, Landsat imagery with its spatial and temporal resolution proved a good potential for estimating final GY over dierent crops in a rotation, at a relatively small field scale

    Monitoring within-field variability of corn yield using sentinel-2 and machine learning techniques

    Get PDF
    Monitoring and prediction of within-field crop variability can support farmers to make the right decisions in different situations. The current advances in remote sensing and the availability of high resolution, high frequency, and free Sentinel-2 images improve the implementation of Precision Agriculture (PA) for a wider range of farmers. This study investigated the possibility of using vegetation indices (VIs) derived from Sentinel-2 images and machine learning techniques to assess corn (Zea mays) grain yield spatial variability within the field scale. A 22-ha study field in North Italy was monitored between 2016 and 2018; corn yield was measured and recorded by a grain yield monitor mounted on the harvester machine recording more than 20,000 georeferenced yield observation points from the study field for each season. VIs from a total of 34 Sentinel-2 images at different crop ages were analyzed for correlation with the measured yield observations. Multiple regression and two different machine learning approaches were also tested to model corn grain yield. The three main results were the following: (i) the Green Normalized Difference Vegetation Index (GNDVI) provided the highest R2 value of 0.48 for monitoring within-field variability of corn grain yield; (ii) the most suitable period for corn yield monitoring was a crop age between 105 and 135 days from the planting date (R4-R6); (iii) Random Forests was the most accurate machine learning approach for predicting within-field variability of corn yield, with an R2 value of almost 0.6 over an independent validation set of half of the total observations. Based on the results, within-field variability of corn yield for previous seasons could be investigated from archived Sentinel-2 data with GNDVI at crop stage (R4-R6)

    Improving Retrievals of Crop Vegetation Parameters from Remote Sensing Data

    Full text link
    Agricultural systems are difficult to model because crop growth is driven by the strongly nonlinear interaction of Genotype x Environment x Management (G x E x M) factors. Due to the nonlinearity in the interaction of these factors, the amount of data necessary to develop and utilize models to accurately predict the performance of agricultural systems at an operational scale is large. Satellite remote sensing provides the potential to vastly increase the amount of data available for modelling agricultural systems as a result of its high revisit time and spatial coverage. Unfortunately, there have been significant difficulties in deploying remote sensing for many agricultural modelling applications because of the uncertainty involved in the retrievals. In this dissertation, we show that collecting farmer-provided agro-managment information has the potential to reduce the uncertainty in the retrieval products obtained from remote sensing observations. Specifically, both field-scale and regional-scale analysis are used to show that secondary factor variability is a very significant cause of uncertainty in both crop growth modelling and agricultural remote sensing that needs to be addressed through increased data collection. In order to address this need for increased data availability, a method is developed that allows geolocated crop growth model simulations to be used to train satellite-based crop state variable retrievals, which is then validated at regional scale. The method developed provides a general robust methodology to create a large-scale platform that would allow farmers to share data with government agencies and universities to improve crop state variable retrievals and crop growth modelling and provide farmers, government, industry, and researchers with insights and predictive capability into crop growth at both field and regional scales
    • …
    corecore