2,040 research outputs found

    Software engineering whispers: The effect of textual vs. graphical software design descriptions on software design communication

    Get PDF
    Context:\ua0Software\ua0engineering\ua0is a social and collaborative activity. Communicating and sharing knowledge between\ua0software\ua0developers requires much effort. Hence, the quality of\ua0communication\ua0plays an important role in influencing project success. To better understand the\ua0effect\ua0of\ua0communication\ua0on project success, more in-depth empirical studies investigating this phenomenon are needed. Objective: We investigate the\ua0effect\ua0of using a\ua0graphical\ua0versus\ua0textual\ua0design\ua0description\ua0on co-located\ua0software\ua0design\ua0communication. Method: Therefore, we conducted a family of experiments involving a mix of 240\ua0software\ua0engineering\ua0students from four universities. We examined how different\ua0design\ua0representations (i.e.,\ua0graphical\ua0vs.\ua0textual) affect the ability to Explain, Understand, Recall, and Actively Communicate knowledge. Results: We found that the\ua0graphical\ua0design\ua0description\ua0is better than the\ua0textual\ua0in promoting Active Discussion between developers and improving the Recall of\ua0design\ua0details. Furthermore, compared to its unaltered version, a well-organized and motivated\ua0textual\ua0design\ua0description–that is used for the same amount of time–enhances the recall of\ua0design\ua0details and increases the amount of active discussions at the cost of reducing the perceived quality of explaining

    Highlighting model elements to improve OCL comprehension

    Get PDF
    Models, metamodels, and model transformations play a central role in Model-Driven Development (MDD). Object Constraint Language (OCL) was initially proposed as part of the Unified Modeling Language (UML) standard to add the precision and validation capabilities lacking in its diagrams, and to express well-formedness rules in its metamodel. OCL has several other applications, such as defining design metrics, code-generation templates, or validation rules for model transformations, required in MDD. Learning OCL as part of a UML course at the university would seem natural but is still the exception rather than the rule. We believe that this is mainly due to a widespread perception that OCL is hard to learn, as gleaned from claims made in the literature. Based on data gathered over the past school years from numerous undergraduate students of di↵erent Software Engineering courses, we analyzed how learning design by contract clauses with UML+OCL compares with several other Software Engineering Body Of Knowledge (SWEBOK) topics. The outcome of the learning process was collected in a rigorous setup, supported by an e-learning platform. We performed inferential statistics on that data to support our conclusions and identify the relevant explanatory variables for students’ success/failure. The obtained findings lead us to extend an existing OCL tool with two novel features: one is aimed at OCL apprentices and goes straight to the heart of the matter by allowing to visualize how OCL expressions traverse UML class diagrams; the other is intended for researchers and allows to compute OCL complexity metrics, making it possible to replicate a research study like the one we are presenting.Modelos, metamodelos e transformações de modelo desempenham um papel central em MDD. OCL foi inicialmente proposta como parte da UML para adicionar os recursos de precisão e validação que faltavam nestes diagramas, e também para expressar regras de boa formação no metamodelo. OCL possui outras aplicações, tais como definir métricas de desenho, modelos de geração de código ou regras de validação para transformações de modelo, exigidas em MDD. Aprender OCL como parte de um curso de UML na universidade parecia portanto natural, não sendo no entanto o que se verifica. Acreditamos que isso se deva a uma percepção generalizada de que OCL é difícil de aprender, tendo em conta afirmações feitas na literatura. Com base em dados recolhidos em anos letivos anteriores de vários alunos de licenciatura de diferentes cursos de Engenharia de Software, analisámos como a aprendizagem por cláusulas contratuais de UML + OCL se compara a outros tópicos do SWEBOK. O resultado do processo de aprendizagem foi recolhido de forma rigorosa, apoiado por uma plataforma de e-learning. Realizámos estatísticas inferenciais sobre os dados para apoiar as nossas conclusões, de forma a identificar as variáveis explicativas relevantes para o sucesso / fracasso dos alunos. As conclusões obtidas levaram-nos a estender uma ferramenta OCL com duas novas funcionalidades: a primeira é voltada para os estudantes de OCL e permite visualizar como as expressões percorrem um diagrama de classes UML; a segunda é voltada para investigadores e permite calcular métricas de complexidade OCL, habilitando a réplica de um estudo semelhante ao apresentado

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Model based test suite minimization using metaheuristics

    Get PDF
    Software testing is one of the most widely used methods for quality assurance and fault detection purposes. However, it is one of the most expensive, tedious and time consuming activities in software development life cycle. Code-based and specification-based testing has been going on for almost four decades. Model-based testing (MBT) is a relatively new approach to software testing where the software models as opposed to other artifacts (i.e. source code) are used as primary source of test cases. Models are simplified representation of a software system and are cheaper to execute than the original or deployed system. The main objective of the research presented in this thesis is the development of a framework for improving the efficiency and effectiveness of test suites generated from UML models. It focuses on three activities: transformation of Activity Diagram (AD) model into Colored Petri Net (CPN) model, generation and evaluation of AD based test suite and optimization of AD based test suite. Unified Modeling Language (UML) is a de facto standard for software system analysis and design. UML models can be categorized into structural and behavioral models. AD is a behavioral type of UML model and since major revision in UML version 2.x it has a new Petri Nets like semantics. It has wide application scope including embedded, workflow and web-service systems. For this reason this thesis concentrates on AD models. Informal semantics of UML generally and AD specially is a major challenge in the development of UML based verification and validation tools. One solution to this challenge is transforming a UML model into an executable formal model. In the thesis, a three step transformation methodology is proposed for resolving ambiguities in an AD model and then transforming it into a CPN representation which is a well known formal language with extensive tool support. Test case generation is one of the most critical and labor intensive activities in testing processes. The flow oriented semantic of AD suits modeling both sequential and concurrent systems. The thesis presented a novel technique to generate test cases from AD using a stochastic algorithm. In order to determine if the generated test suite is adequate, two test suite adequacy analysis techniques based on structural coverage and mutation have been proposed. In terms of structural coverage, two separate coverage criteria are also proposed to evaluate the adequacy of the test suite from both perspectives, sequential and concurrent. Mutation analysis is a fault-based technique to determine if the test suite is adequate for detecting particular types of faults. Four categories of mutation operators are defined to seed specific faults into the mutant model. Another focus of thesis is to improve the test suite efficiency without compromising its effectiveness. One way of achieving this is identifying and removing the redundant test cases. It has been shown that the test suite minimization by removing redundant test cases is a combinatorial optimization problem. An evolutionary computation based test suite minimization technique is developed to address the test suite minimization problem and its performance is empirically compared with other well known heuristic algorithms. Additionally, statistical analysis is performed to characterize the fitness landscape of test suite minimization problems. The proposed test suite minimization solution is extended to include multi-objective minimization. As the redundancy is contextual, different criteria and their combination can significantly change the solution test suite. Therefore, the last part of the thesis describes an investigation into multi-objective test suite minimization and optimization algorithms. The proposed framework is demonstrated and evaluated using prototype tools and case study models. Empirical results have shown that the techniques developed within the framework are effective in model based test suite generation and optimizatio

    Design-time Models for Resiliency

    Get PDF
    Resiliency in process-aware information systems is based on the availability of recovery flows and alternative data for coping with missing data. In this paper, we discuss an approach to process and information modeling to support the specification of recovery flows and alternative data. In particular, we focus on processes using sensor data from different sources. The proposed model can be adopted to specify resiliency levels of information systems, based on event-based and temporal constraints

    A novel model for improving the maintainability of web-based systems

    Get PDF
    Web applications incorporate important business assets and offer a convenient way for businesses to promote their services through the internet. Many of these web applica- tions have evolved from simple HTML pages to complex applications that have a high maintenance cost. This is due to the inherent characteristics of web applications, to the fast internet evolution and to the pressing market which imposes short development cycles and frequent modifications. In order to control the maintenance cost, quantita- tive metrics and models for predicting web applications’ maintainability must be used. Maintainability metrics and models can be useful for predicting maintenance cost, risky components and can help in assessing and choosing between different software artifacts. Since, web applications are different from traditional software systems, models and met- rics for traditional systems can not be applied with confidence to web applications. Web applications have special features such as hypertext structure, dynamic code generation and heterogenousity that can not be captured by traditional and object-oriented metrics. This research explores empirically the relationships between new UML design met- rics based on Conallen’s extension for web applications and maintainability. UML web design metrics are used to gauge whether the maintainability of a system can be im- proved by comparing and correlating the results with different measures of maintain- ability. We studied the relationship between our UML metrics and the following main- tainability measures: Understandability Time (the time spent on understanding the soft- ware artifact in order to complete the questionnaire), Modifiability Time(the time spent on identifying places for modification and making those modifications on the software artifact), LOC (absolute net value of the total number of lines added and deleted for com- ponents in a class diagram), and nRev (total number of revisions for components in a class diagram). Our results gave an indication that there is a possibility for a relationship to exist between our metrics and modifiability time. However, the results did not show statistical significance on the effect of the metrics on understandability time. Our results showed that there is a relationship between our metrics and LOC(Lines of Code). We found that the following metrics NAssoc, NClientScriptsComp, NServerScriptsComp, and CoupEntropy explained the effort measured by LOC(Lines of Code). We found that NC, and CoupEntropy metrics explained the effort measured by nRev(Number of Revi- sions). Our results give a first indication of the usefulness of the UML design metrics, they show that there is a reasonable chance that useful prediction models can be built from early UML design metrics

    Model-based risk assessment

    Get PDF
    In this research effort, we focus on model-based risk assessment. Risk assessment is essential in any plan intended to manage software development or maintenance process. Subjective techniques are human intensive and error-prone. Risk assessment should be based on architectural attributes that we can quantitatively measure using architectural level metrics. Software architectures are emerging as an important concept in the study and practice of software engineering nowadays, due to their emphasis on large-scale composition of software product, and to their support for emerging software engineering paradigms, such as product line engineering, component based software engineering, and software evolution.;In this dissertation, we generalize our earlier work on reliability-based risk assessment. We introduce error propagation probability in the assessment methodology to account for the dependency among the system components. Also, we generalize the reliability-based risk assessment to account for inherent functional dependencies.;Furthermore, we develop a generic framework for maintainability-based risk assessment which can accommodate different types of software maintenance. First, we introduce and define maintainability-based risk assessment for software architecture. Within our assessment framework, we investigate the maintainability-based risk for the components of the system, and the effect of performing the maintenance tasks on these components. We propose a methodology for estimating the maintainability-based risk when considering different types of maintenance. As a proof of concept, we apply the proposed methodology on several case studies. Moreover, we automate the estimation of the maintainability-based risk assessment methodology
    • …
    corecore