2,635 research outputs found

    Application of DMSP/OLS nighttime light images : a meta-analysis and a systematic literature review

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing 6 (2014): 6844-6866, doi:10.3390/rs6086844.Since the release of the digital archives of Defense Meteorological Satellite Program Operational Line Scanner (DMSP/OLS) nighttime light data in 1992, a variety of datasets based on this database have been produced and applied to monitor and analyze human activities and natural phenomena. However, differences among these datasets and how they have been applied may potentially confuse researchers working with these data. In this paper, we review the ways in which data from DMSP/OLS nighttime light images have been applied over the past two decades, focusing on differences in data processing, research trends, and the methods used among the different application areas. Five main datasets extracted from this database have led to many studies in various research areas over the last 20 years, and each dataset has its own strengths and limitations. The number of publications based on this database and the diversity of authors and institutions involved have shown promising growth. In addition, researchers have accumulated vast experience retrieving data on the spatial and temporal dynamics of settlement, demographics, and socioeconomic parameters, which are “hotspot” applications in this field. Researchers continue to develop novel ways to extract more information from the DMSP/OLS database and apply the data to interdisciplinary research topics. We believe that DMSP/OLS nighttime light data will play an important role in monitoring and analyzing human activities and natural phenomena from space in the future, particularly over the long term. A transparent platform that encourages data sharing, communication, and discussion of extraction methods and synthesis activities will benefit researchers as well as public and political stakeholders.This work is supported by the 111 project “Hazard and Risk Science Base at Beijing Normal University” under Grant B08008 (Ministry of Education and State Administration of Foreign Experts Affairs, PRC), the State Key Laboratory of Earth Surface Processes and Resource Ecology of Beijing Normal University (No. 2013-RC-03), and the Fundamental Research Funds for the Central Universities (Grant No. 201413037)

    Utility of High Resolution Human Settlement Data for Assessment of Electricity Usage Patterns

    Get PDF
    Electricity is vital for modern human civilization, and its demands are expected to significantly rise due to urban growth, transportation modernization, and increasing industrialization and energy accessibility. Meeting the present and future demands while minimizing the environmental degradation from electricity generation pathways presents a significant sustainability challenge. Urban areas consume around 75% of global energy supply yet urban energy statistics are scarce all over the world, creating a severe hindrance for the much-needed energy sustainability studies. This work explores the scope of geospatial data-driven analysis and modeling to address this challenge. Identification and measurements of human habitats, a key measure, is severely misconceived. A multi-scale analysis of high, medium, and coarse resolution datasets in Egypt and Taiwan illustrates the increasing discrepancies from global to local scales. Analysis of urban morphology revealed that high-resolution datasets could perform much better at all scales in diverse geographies while the power of other datasets rapidly diminishes from the urban core to peripheries. A functional inventory of urban settlements was developed for three cities in the developing world using very high-resolution images and texture analysis. Analysis of correspondence between nighttime lights emission, a proxy of electricity consumption, and the settlement inventory was the conducted. The results highlight the statistically significant relationship between functional settlement types and corresponding light emission, and underline the potential of remote sensing data-driven methods in urban energy usage assessment. Lastly, the lack of urban electricity data was addressed by a geospatial modeling approach in the United States. The estimated urban electricity consumption was externally validated and subsequently used to quantify the effects of urbanization on electricity consumption. The results indicate a 23% lowering of electricity consumption corresponding to a 100% increase in urban population. The results highlight the potential of urbanization in lowering per-capita energy usage. The opportunity and limits to such energy efficiency were identified with regards to urban population density. The findings from this work validate the applicability of geospatial data in urban energy studies and provide unique insights into the relationship between urbanization and electricity demands. The insights from this work could be useful for other sustainability studies

    Nighttime Lights as a Proxy for Economic Performance of Regions

    Get PDF
    Studying and managing regional economic development in the current globalization era demands prompt, reliable, and comparable estimates for a region’s economic performance. Night-time lights (NTL) emitted from residential areas, entertainment places, industrial facilities, etc., and captured by satellites have become an increasingly recognized proxy for on-ground human activities. Compared to traditional indicators supplied by statistical offices, NTLs may have several advantages. First, NTL data are available all over the world, providing researchers and official bodies with the opportunity to obtain estimates even for regions with extremely poor reporting practices. Second, in contrast to non-standardized traditional reporting procedures, the unified NTL data remove the problem of inter-regional comparability. Finally, NTL data are currently globally available on a daily basis, which makes it possible to obtain these estimates promptly. In this book, we provide the reader with the contributions demonstrating the potential and efficiency of using NTL data as a proxy for the performance of regions

    Mapping regional land cover and land use change using MODIS time series

    Full text link
    Coarse resolution satellite observations of the Earth provide critical data in support of land cover and land use monitoring at regional to global scales. This dissertation focuses on methodology and dataset development that exploit multi-temporal data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to improve current information related to regional forest cover change and urban extent. In the first element of this dissertation, I develop a novel distance metric-based change detection method to map annual forest cover change at 500m spatial resolution. Evaluations based on a global network of test sites and two regional case studies in Brazil and the United States demonstrate the efficiency and effectiveness of this methodology, where estimated changes in forest cover are comparable to reference data derived from higher spatial resolution data sources. In the second element of this dissertation, I develop methods to estimate fractional urban cover for temperate and tropical regions of China at 250m spatial resolution by fusing MODIS data with nighttime lights using the Random Forest regression algorithm. Assessment of results for 9 cities in Eastern, Central, and Southern China show good agreement between the estimated urban percentages from MODIS and reference urban percentages derived from higher resolution Landsat data. In the final element of this dissertation, I assess the capability of a new nighttime lights dataset from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) for urban mapping applications. This dataset provides higher spatial resolution and improved radiometric quality in nighttime lights observations relative to previous datasets. Analyses for a study area in the Yangtze River Delta in China show that this new source of data significantly improves representation of urban areas, and that fractional urban estimation based on DNB can be further improved by fusion with MODIS data. Overall, the research in this dissertation contributes new methods and understanding for remote sensing-based change detection methodologies. The results suggest that land cover change products from coarse spatial resolution sensors such as MODIS and VIIRS can benefit from regional optimization, and that urban extent mapping from nighttime lights should exploit complementary information from conventional visible and near infrared observations

    Aladdin\u27s Magic Lamp: Developing Methods for Calibration and Geolocation Accuracy Assessment of the DMSP OLS

    Get PDF
    Nighttime satellite imagery from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to observe nocturnal light emissions from sources including cities, wild fires, and gas flares. Data from the DMSP OLS is used in a wide range of studies including mapping urban areas, estimating informal economies, and estimating urban populations. Given the extensive and increasing list of applications a repeatable method for assessing geolocation accuracy, performing inter-calibration, and defining the minimum detectable brightness would be beneficial. An array of portable lights was designed and taken to multiple field sites known to have no other light sources. The lights were operated during nighttime overpasses by the DMSP OLS and observed in the imagery. A first estimate of the minimum detectable brightness is presented based on the field experiments conducted. An assessment of the geolocation accuracy was performed by measuring the distance between the GPS measured location of the lights and the observed location in the imagery. A systematic shift was observed and the mean distance was measured at 2.9km. A method for in situ radiance calibration of the DMSP OLS using a ground based light source as an active target is presented. The wattage of light used by the active target strongly correlates with the signal measured by the DMSP OLS. This approach can be used to enhance our ability to make inter-temporal and inter-satellite comparisons of DMSP OLS imagery. Exploring the possibility of establishing a permanent active target for the calibration of nocturnal imaging systems is recommended. The methods used to assess the minimum detectable brightness, assess the geolocation accuracy, and build inter-calibration models lay the ground work for assessing the energy expended on light emitted into the sky at night. An estimate of the total energy consumed to light the night sky globally is presented

    Supporting Global Environmental Change Research: A Review of Trends and Knowledge Gaps in Urban Remote Sensing

    Get PDF
    This paper reviews how remotely sensed data have been used to understand the impact of urbanization on global environmental change. We describe how these studies can support the policy and science communities’ increasing need for detailed and up-to-date information on the multiple dimensions of cities, including their social, biological, physical, and infrastructural characteristics. Because the interactions between urban and surrounding areas are complex, a synoptic and spatial view offered from remote sensing is integral to measuring, modeling, and understanding these relationships. Here we focus on three themes in urban remote sensing science: mapping, indices, and modeling. For mapping we describe the data sources, methods, and limitations of mapping urban boundaries, land use and land cover, population, temperature, and air quality. Second, we described how spectral information is manipulated to create comparative biophysical, social, and spatial indices of the urban environment. Finally, we focus how the mapped information and indices are used as inputs or parameters in models that measure changes in climate, hydrology, land use, and economics

    Supporting Global Environmental Change Research: A Review of Trends and Knowledge Gaps in Urban Remote Sensing

    Get PDF
    abstract: This paper reviews how remotely sensed data have been used to understand the impact of urbanization on global environmental change. We describe how these studies can support the policy and science communities’ increasing need for detailed and up-to-date information on the multiple dimensions of cities, including their social, biological, physical, and infrastructural characteristics. Because the interactions between urban and surrounding areas are complex, a synoptic and spatial view offered from remote sensing is integral to measuring, modeling, and understanding these relationships. Here we focus on three themes in urban remote sensing science: mapping, indices, and modeling. For mapping we describe the data sources, methods, and limitations of mapping urban boundaries, land use and land cover, population, temperature, and air quality. Second, we described how spectral information is manipulated to create comparative biophysical, social, and spatial indices of the urban environment. Finally, we focus how the mapped information and indices are used as inputs or parameters in models that measure changes in climate, hydrology, land use, and economics

    Exploration of eco-environment and urbanization changes in coastal zones: A case study in China over the past 20 years

    Get PDF
    Abstract With the rapid development of urbanization and population migration, since the 20th century, the natural and eco-environment of coastal areas have been under tremendous pressure due to the strong interference of human response. To objectively evaluate the coastal eco-environment condition and explore the impact from the urbanization process, this paper, by integrating daytime remote sensing and nighttime remote sensing, carried out a quantitative assessment of the coastal zone of China in 2000–2019 based on Remote Sensing Ecological Index (RSEI) and Comprehensive Nighttime Light Index (CNLI) respectively. The results showed that: 1) the overall eco-environmental conditions in China's coastal zone have shown a trend of improvement, but regional differences still exist; 2) during the study period, the urbanization process of cities continued to advance, especially in seaside cities and prefecture-level cities in Jiangsu and Shandong, which were much higher than the average growth rate; 3) the Coupling Coordination Degree (CCD) between the urbanization and eco-environment in coastal cities is constantly increasing, but the main contribution of environmental improvement comes from non-urbanized areas, and the eco-environment pressure in urbanized areas is still not optimistic. As a large-scale, long-term series of eco-environment and urbanization process change analysis, this study can provide theoretical support for mesoscale development planning, eco-environment condition monitoring and environmental protection policies from decision-makers
    • …
    corecore